NI-CU-EGP AU QUÉBEC : INTÉGRATION DES PROJETS CONSOREM ET CIBLAGE

Projet 2014-07

Par : Ludovic Bigot, M.Sc., géo.

2015

AVERTISSEMENT

Ce document présente certains résultats des travaux de recherche du CONSOREM (Consortium de Recherche en Exploration minérale) rendus publics pour le bénéfice de l'ensemble de la communauté géologique, ceci après la période de confidentialité prévue aux règlements généraux du CONSOREM.

Bien que ce document ait subi un processus d'évaluation interne, des erreurs ou omissions peuvent s'y retrouver. Le CONSOREM ne peut être tenu responsable pour des décisions prises sur la base de ces résultats.

Le contenu du document demeure la propriété de son auteur et du CONSOREM et peut être reproduit en totalité ou en partie à des fins non-commerciales en citant la référence suivante :

Bigot, L., 2015. Ni-Cu-EGP au Québec : Intégration des projets CONSOREM et ciblage. Rapport, Projet CONSOREM 2014-07, 83 p.

Toutefois, la reproduction multiple de ce document, en tout ou en partie, pour diffusion à des fins commerciales est interdite, sauf avec la permission écrite de CONSOREM.

CONSOREM

Université du Québec à Chicoutimi 555, boulevard de l'Université Chicoutimi, QC, G7H 2B1

Tél.: (418) 545-5011 poste 5634

Courriel : consorem@uqac.ca

Site Web: www.consorem.ca

RÉSUMÉ

Plusieurs projets ont été réalisés au CONSOREM sur la thématique des systèmes magmatiques à Ni-Cu-EGP au Québec. En effet, six projets ont abordé ce thème avec des objectifs et des approches distinctes que ce soit sur le plan méthodologique ou sur leurs démarche géochimique, structurale, ou géophysique. Ces divers projets ont générés plusieurs outils d'aide à l'exploration ou au ciblage.

Le présent projet vise à faire un retour sur ces réalisations, question de permettre leur intégration et leur synthèse afin de dégager de futures pistes de projets de recherche. Ainsi la présente revue va permettre de valoriser les faits saillants de plusieurs de ces méthodes d'exploration, et de les mettre en application sur de nouveaux jeux de données et de nouveaux territoires.

Deux projets ayant des approches différentes ont retenu particulièrement l'attention : l'un permet la discrimination d'une signature de magma fertile pour des minéralisations en EGP d'après un profil de ratio d'éléments dans un outil géochimique (outil RA-EGP – projet 2003-09); l'autre établit une cartographie prévisionnelle des roches ultramafiques et riches en Ni en couplant des données de radiométrie, du gradient vertical, et de Ni dans les sédiments de lac (projet 2007-02B).

L'outil géochimique RA-EGP est appliqué sur la base de données lithogéochimiques du SIGÉOM 2014. L'intérêt est d'évaluer le potentiel des échantillons spatialement isolés d'indices de Ni-Cu-EGP connus. Après le traitement, treize échantillons répartis dans la ceinture de Cape Smith, à la Baie-James, dans la ceinture de Belleterre, et en Gaspésie présentent un réel potentiel métallique et méritent d'être travaillés.La méthode de couplage de la radiométrie, du gradient vertical, et du Ni dans les sédiments de lac est appliquée à la Baie-James pour cibler des roches ultramafiques et riches en Ni. L'approche repose sur plusieurs concepts : (1) les roches ultramafiques (i.e., les moins différenciées) concentrent préférentiellement le Ni, car le Ni est contenu dans l'olivine alors que la cristallisation fractionnée diminue la concentration en Ni dans le magma résiduel; (2) les roches ultramafiques sont pauvres en éléments radiogéniques K, Th, U, elles vont donc marquer des creux radiométriques; et (3), les roches ultramafiques sont riches en magnétite et/ou pyrrhotite, elles vont marquer de hautes valeurs du gradient vertical. Le projet 2007-02B a été réalisé sur un secteur du Grenville. Pour le présent projet d'intégration, l'application se fait à la Baie-James. Ce secteur a été choisi car de récentes informations géoscientifiques le couvrent : les sédiments de fond de lac ont été ré-analysés par ICP-MS entre 2010 et 2012, et des levés magnétiques et radiométriques de 2009 à 2011 couvrent ce même secteur. Le contexte quaternaire est différent entre les secteurs d'étude à la Baie-James et ceux dans le Grenville, ce qui nécessite des changements dans la méthode. En effet, dans le secteur d'étude à la Baie-James, il y a une importante couverture quaternaire de till épais et continu et de lacs, ce qui rend la radiométrie caduque malgré un filtrage des paramètres environnementaux et influence les valeurs de sédiments de lac. Un rehaussement des anomalies de sédiments de lac par la méthode de régression spatiale a permis d'annuler les artefacts dus à l'environnement secondaire, et d'obtenir des valeurs non biaisées de Ni résiduel. Un filtrage a aussi été nécessaire pour le gradient vertical; en effet, les valeurs supérieures à 14 nT/m sont des marqueurs des formations de fer. Ainsi, pour le ciblage des roches ultramafiques et riches en Ni à la Baie-James, la combinaison des couches de hautes valeurs de gradient vertical filtré et de Ni résiduel dans les sédiments de lac est optimale. Cela a abouti à cibler 15 km² de cibles de hautes priorité, 9,9 km² de cibles de priorité moyenne, et 25 km² de cibles de plus faible priorité. Ces cibles sont généralement de petites dimensions,

similaires à des filons-couches ou des coulées chenalisées, ce qui pourrait s'apparenter au modèle gîtologique de type Raglan.

TABLE DES MATIÈRES

NI-CU-EGP	AU QUÉBEC : INTÉGRATION DES PROJETS CONSOREM ET CIBLAGEi
Avertisser	ment ii
Résumé	iii
Table des	matièresiv
Liste des t	figuresv
Liste des t	tableauxvi
Liste des a	annexesvi
1	INTRODUCTION1
2	LES SYSTÈMES NI-CU-EGP MAGMATIQUES1
3	RETOUR SUR LES PROJETS DU CONSOREM PORTANT SUR LE NI-CU-EGP MAGMATIQUE4
3.1	Le diagramme Ratio-Arachnide pour les EGP (projet 2003-09)5
3.2	La combinaison de données géophysiques et géochimiques pour le Ni-Cu (projet 2007-02B)6
4	CIBLAGE DES SECTEURS FAVORABLES AUX EGP D'APRÈS LE DIAGRAMME RATIO-ARACHNIDE EGP8
5	CIBLAGE POUR LE NI PAR UNE CARTOGRAPHIE PRÉVISIONNELLE DES ROCHES ULTRAMAFIQUES ET RICHES EN NI12
5.1	Secteur d'étude et données disponibles
5.2	Validation de la méthode à la Baie-James15
5.3	Filtrage des données géophysiques
5.4	Filtrage des données géochimiques
5.5	Méthode de logique floue23
5.6	Ciblage des roches ultramafiques et riches en Ni à la Baie-James25
5.7	Discussion29
6	CONCLUSIONS30
	IMENTS31
RÉFÉREN	
	A — CIBLES POUR LES EGP AU QUÉBEC EN UTILISANT LA MÉTHODE DU DIAGRAMME RATIO-ARACHNIDE36
ANNEXE	B – CIBLES POUR LE NI AU QUÉBEC À PARTIR DE LA CARTOGRAPHIE PRÉVISIONNELLE DES ROCHES ULTRAMAFIQUES RICHES EN NI40

LISTE DES FIGURES

Figure 1: Distribution des gisements de Ni-Cu et EGP dans le temps. Modifié d'après Maier et Groves (2011)
Figure 3 : Diagramme Ratio-Arachnide EGP avec en rouge un profil de roche magmatique fertile en EGP, et en gris le profil du manteau, d'après Pearson (2007). À noter que des facteurs
d'accentuations sont appliqués sur chaque ratio d'élément
des échantillons utilisables à l'extérieur d'un buffer de 1 km autour des gîtes d'EGP, de Ni, et de Ni-Cu connus (triangle rouge). Les surfaces colorées sont les différentes sous-provinces
géologiques au Québec d'après SIGÉOM 2014
Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux du gisement de Rathbun en Ontario. Géologie d'après SIGÉOM 2014
Figure 6 : Étude de cas à la Baie-James à proximité de la mine d'or Eastmain. Le triangle rouge indique l'échantillon utilisable dans le diagramme RA-EGP et isolé de gîtes connus. Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux du gisement de Raglan. Géologie d'après SIGÉOM 2014.
Figure 7 : Étude de cas dans la ceinture de roches vertes de Belleterre. Le triangle rouge indique l'échantillon utilisable dans le diagramme RA-EGP et isolé de gîtes connus. Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux des gisements de Ni-Cu dans les komatiites
(différents de Raglan). Géologie d'après SIGÉOM 2014
Figure 9: Efficacité du traçage des éléments par différentes méthodes dans l'environnement secondaire. D'après Rafini (2015)
Figure 10: Géologie du secteur d'étude d'après SIGÉOM 2014
2014
I3-V3 : roches mafiques; I4-V4 : roches ultramafiques. L'étoile mauve indique le seuil (2 500 ppm Ni) au-delà duquel une valeur devient un indice d'après SIGÉOM
Figure 13: Valeur de gradient vertical selon des lithologies à la Baie-James. D'après les levés DP 2009-01 et DP 2011-01 - N= 995 403. I1-V1 : roches felsiques; I2-V2 : roches intermédiaires; I3-V3 : roches mafiques; I4-V4 : roches ultramafiques; S9 : formations de fer
Figure 15 : Carte radiométrique originale dans le levé DP 2011-01. Le contour en noir indique les bordures des lacs majeurs. Les lignes verticales indiquent les points de mesure
point d'inflexion à 130 m marque la limite de la zone d'influence. D'après les données radiométriques du levé DP 2011-01 (D'Amours, 2011)
Figure 18 : Valeurs brutes du Cu dans les sédiments de lac avec les différents levés (contour noir).
Figure 19 : Valeurs nivelées du Cu dans les sédiments de lac avec les différents levés (contour

Figure 20 : Contour de la couverture de till mince et discontinu, alors que l'extérieur est essentiellement couvert par du till épais et continu. Valeurs nivelées du Cu dans les sédiments de lac.
Figure 21: Distribution des valeurs de Cu résiduel pour le secteur d'étude
Figure 25 : Couches d'appartenance floue du gradient vertical et du Ni résiduel
Figure 30: Exemple de cible de priorité 1. A) La carte de combinaison de couche d'appartenance floue du Ni résiduel et du gradient vertical filtré. Les valeurs supérieures au 50° centile sont des cibles. Des valeurs en Ni et EGP dans la roche sont présentés respectivement par des points jaunes et des triangles rouges. B) Lithologie connue: I4 – intrusion ultramafique, I1C – granodiorite, S1-S6 - grès, V3(M16) – basalte (amphibolite)
LISTE DES TABLEAUX
Tableau 1: Les principaux types de gîtes de Ni-Cu-EGP
LISTE DES ANNEXES
ANNEXE A – CIBLES POUR LES EGP AU QUÉBEC EN UTILISANT LA MÉTHODE DU DIAGRAMME RATIO-ARACHNIDE36
ANNEXE B – CIBLES POUR LE NI AU QUÉBEC À PARTIR DE LA CARTOGRAPHIE PRÉVISIONNELLE DES ROCHES ULTRAMAFIQUES RICHES EN NI40

1 INTRODUCTION

Plusieurs projets ont été réalisés au CONSOREM sur la thématique des systèmes magmatiques à Ni-Cu-EGP au Québec. En effet, six projets ont abordé ce thème avec des objectifs et des approches distinctes que ce soit sur le plan méthodologique ou sur leurs démarches géochimique, structurale, ou géophysique. Ces divers projets ont générés plusieurs outils d'aide à l'exploration ou au ciblage.

Le projet actuel propose de faire une revue des avancées portant sur le Ni-Cu-EGP réalisées au CONSOREM, puis une mise en valeur de certaines méthodes par des applications sur de nouvelles bases de données et de nouveaux territoires au Québec.

2 LES SYSTÈMES NI-CU-EGP MAGMATIQUES

À l'échelle mondiale 99% des platinoïdes, 70% du nickel, et 2% du cuivre sont produits par ces gisements magmatiques (Jébrak et Marcoux, 2008). Par ailleurs, de nombreux sous-produits métalliques tels que le fer, le manganèse, le chrome, le cobalt, l'étain, et parfois l'or sont associés à ces gisements. La plupart des gisements de Ni-Cu-EGP se trouvent dans deux fenêtres d'âge, au Néoarchéen et au Paléoprotérozoïque (**Figure 1**).

Les principaux types de gîtes de Ni-Cu-EGP magmatique sont présentés au **Tableau 1** d'après les travaux de Barnes et Lightfoot (2005), Eckstrand et Hubert (2007), Jébrak et Marcoux (2008), et Zientek (2010).

En termes de génèse, il existe un tronc commun à la formation de ces gîtes, et ce, quel que soit le type. Barnes et Lightfoot (2005) et Eckstrand et Hubert (2007) proposent les étapes suivantes pour la mise en place des gîtes magmatiques :

- (1) un fort degré de fusion partielle du manteau qui permet la libération du Ni de l'olivine;
- (2) le transport du magma dans la croûte;
- (3) la saturation en soufre du magma par contamination de matériel riche en soufre (souvent des sédiments);
- (4) le captage des métaux par le liquide sulfuré;
- (5) la concentration du liquide sulfuré dans les pièges structuraux de la chambre magmatique (e.g., des dépressions);
- (6) la cristallisation des sulfures, massive à la base de la chambre magmatique; et
- (7) des évènements hydrothermaux de reconcentration et de bonification des sulfures.

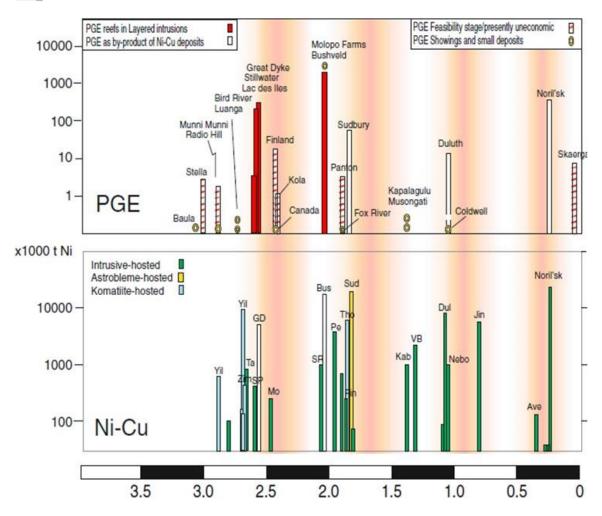


Figure 1: Distribution des gisements de Ni-Cu et EGP dans le temps. Modifié d'après Maier et Groves (2011).

Tableau 1: Les principaux types de gîtes de Ni-Cu-EGP.

Type de gîte	Caractéristiques du système	Minéralisations	Gisement type	
Complexe igné lité (EGP)	Grand pluton stratifié en entonnoir associé à un point chaud. Transition de dunite à la base, puis gabbro/norite vers le sommet	EGP type Reef (horizons stratiformes) et type Contact (sulfures disséminés à massifs)	Bushveld (RSA) 9815 Mt @ 5 g/t EGP; Stillwater (USA) 50 Mt @ 18 g/t EGP	
Basalte de plateau continental (Ni-Cu ± EGP)	Complexe de filons-couches, épanchement de basaltes tholéiitiques, et feeders dykes de gabbro, en contexte de rift intracratonique associé à un point chaud	PO, PN, CPY, PY, CUB, MPG massifs à la base des sills et en bordure des dykes gabbroïques	Noril'sk (Russie) 1309,3 Mt 1,77% Ni, 3,57% Cu, 4,7 g/t EGP; Jinchuan (Chine) 515 Mt @ 1,06 % Ni, 0,7 % Cu, 0,5 g/t EGP	
Komatiite type Kambalda (Ni-Cu ± EGP)	Coulées chenalisées puissantes (100m) d'ultramafites contenant des cumulats d'olivine à la base	PO, PN, CPY, MAG, PY massifs dans les dépressions des chenaux, et disséminés dans la partie supérieure de la coulée.	Kambalda 34,3 Mt @ 3,09 % Ni et 0,25 % Cu; Raglan 18,5 Mt @ 3,13 % Ni et 0,88% Cu	
Atypique : Voisey's Bay (Ni-Cu)	Gabbronorite, anorthosite, et troctolite misent en place dans une structure crustale	Sulfures massifs à la base de la troctolite. Sulfures massifs et disséminés dans les feeders dykes	Voisey's Bay 136,7 Mt @ 1,59% Ni et 0,85% Cu	
Atypique : Astroblème (Ni-Cu ± EGP)	Grand complexe igné issu d'un impact météoritique. Fonte instantanée de la croute puis cristallisation de norite, gabbro, et granophyre	Dans des dykes de norite à la base qui pénètrent le socle et dans la zone bréchique. Minerai disséminé, massif, et bréchique, à PO, PN, CPY, BN, MGP	Sudbury 1648 Mt @ 1,2% Ni et 1,03% Cu, 0,8 g/t EGP	

Lexique: PO – pyrrhotite, PN – pentlandite, CPY – chalcopyrite, PY – pyrite, CUB – cubanite, BN – bornite, MPG – minéraux du groupe du platine

3 RETOUR SUR LES PROJETS DU CONSOREM PORTANT SUR LE NI-CU-EGP MAGMATIQUE

Six projets ont spécifiquement abordé le thème du Ni-Cu et/ou EGP dans les projets CONSOREM :

- 2002-02 (Pearson, 2007) : Développement de nouveaux outils pour l'exploration des ÉGP.
- 2003-09 (Pearson, 2007): Un nouvel outil d'exploration pour les EGP le diagramme RA-EGP.
- 2007-02B (Trépanier, 2008): Évaluation du potentiel minéral en Cu-Ni-U-Au, et identification d'intrusions mafiques-ultramafiques.
- 2008-05 (Faure, 2009) : Structures crustales et potentiel des intrusions mafiques dans le Grenville pour les minéralisations magmatiques de Cu-Ni.
- 2008-11 (Longuépée et Mathieu, 2014) : Fertilité des intrusions mafiques-ultramafiques pour le Ni-Cu.
- 2012-03 (Mathieu, 2013): Exploration des gîtes magmatiques cuprifères dans la Province du Grenville.

Tous ces projets ont fait l'objet de rapports disponibles sur le site du CONSOREM, ils ne seront donc pas détaillés; cependant, les approches méthodologiques et les réalisations sont présentées dans le **Tableau 2**.

Tableau 2: Approches méthodologiques et réalisations des projets CONSOREM portant sur le Ni-Cu-EGP.

Projet	Approche géochimique/ minéralogique/ pétrologique	Approche structurale	Approche géophysique	Réalisation : outil géochimique d'aide à l'exploration	Réalisation : ciblage (carte de potentiel)
2002-02	X			X	
2003-09	X			X	
2007-02 (B)	X		X		X
2008-05	X	Χ	X		X
2008-11	X			X	
2012-03	X				X

Parmi les six projets, une attention particulière a été mise sur les projets 2003-09 et 2007-02(B) car de nouvelles données de géochimie et de géophysique du MERN au Québec permettent une application pertinente. Ces nouvelles données sont décrites dans les sections 4 et 5 du rapport.

3.1 Le diagramme Ratio-Arachnide pour les EGP (projet 2003-09)

Le projet a été initié à la suite d'une réflexion sur les modèles de mise en place des minéralisations EGP; à savoir que ces minéralisations sont le résultat de processus pétrogénétiques particuliers, notamment la saturation en soufre du magma. Avant la réalisation de ce projet, les processus magmatiques étaient représentés dans plusieurs diagrammes binaires EGP de ratio d'éléments (e.g., Ni/Pd vs Cu/lr; **Figure 2**). Le concept derrière le projet 2003-09 est une intégration graphique de plusieurs diagrammes de ratios d'élément sous forme d'un seul diagramme synthèse (**Figure 2**). Il s'agit alors de faire des observations en tranche des diagrammes binaires EGP en ne considérant que le manteau primitif comme précurseur, et en utilisant successivement les ratios d'éléments déjà définis (Pearson, 2007) à partir de la lithogéochimie.

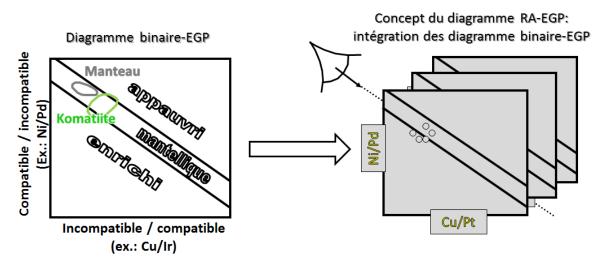
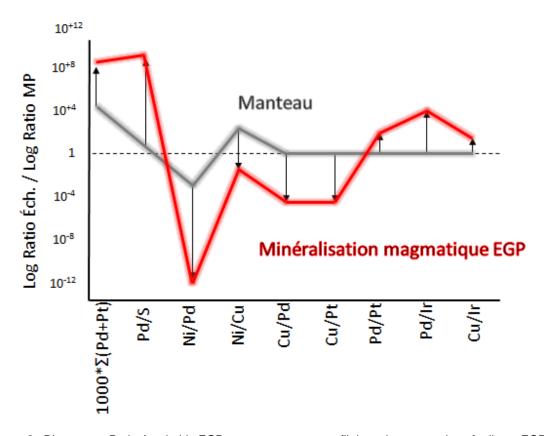



Figure 2: Concept du diagramme Ratio-Arachnide EGP. D'après Pearson (2007).

Le diagramme Ratio-Arachnide EGP est présenté dans la **Figure 3**. Le profil de roche fertile en EGP (en rouge) est caractéristique sur plusieurs paramètres (Pearson, 2007). Le premier ratio d'éléments, 1000*Σ(Pd+Pt), permet d'évaluer la concentration absolue en EGP dans le magma. Le faible ratio Ni/Pd indique une forte dominance du Pd sur le Ni. La pente positive après le ratio Ni/Pd est caractéristique de processus magmatiques. La pente négative entre les ratios Ni/Cu et Cu/Pd est caractéristique de mobilisation hydrothermale, donc une autre composante pas seulement magmatique. La pente négative entre Cu/Pd et Cu/Pt témoigne de la mobilité relative du Pd, ce qui indique un hydrothermalisme de haute température.

Figure 3: Diagramme Ratio-Arachnide EGP avec en rouge un profil de roche magmatique fertile en EGP, et en gris le profil du manteau, d'après Pearson (2007). À noter que des facteurs d'accentuations sont appliqués sur chaque ratio d'élément.

Pearson (2007) a évalué le profil pour de nombreux gisements et types de gisement à partir du diagramme Ratio-Arachnide EGP, entre autre Bushveld, Stillwater, Raglan. Bien que chaque gisement ait un profil variable, un élément est récurent quel que soit le type de gîte, il s'agit du « crochet » du ratio Ni/Pd. Ainsi, ce faible ratio Ni/Pd est discriminant de roches fertiles pour les EGP. Un programme informatique réalisé au CONSOREM permet de produire des profils, et de faire apparaître les profils des gisements connus. Désormais, il est donc facile de comparer un système de roche ultramafique (à mafique) avec les profils de gisements connus dans le but d'évaluer son potentiel.

3.2 La combinaison de données géophysiques et géochimiques pour le Ni-Cu (projet 2007-02B)

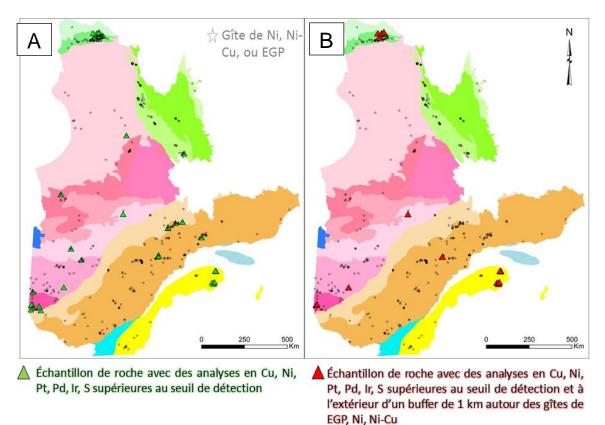
À la suite de l'acquisition de levés radiométriques couvrant une partie de la Province de Grenville, le projet 2007-02B a mis à profit ces informations géophysiques, couplés avec le champ magnétique total et le Ni dans les sédiments de lac pour cibler des roches ultramafiques. Le concept de ce modèle de recherche est le suivant (Trépanier, 2008 ; **Tableau 3**) :

- le contenu en Ni dans le magma diminue au cours de la cristallisation fractionnée, donc le Ni est préférentiellement concentré dans les roches les moins différenciées;
- les roches ultramafiques sont pauvres en éléments radiogéniques, donc ces roches sont représentées par des creux radiométriques; et,

• les roches ultramafiques sont riches en magnétite et/ou pyrrhotite (magmatique et métamorphique), ce qui se traduit par une anomalie magnétique positive.

Tableau 3: Critères de ciblage des roches ultramafiques, d'après Trépanier (2008).

Stratégie de ciblage			
Critères géophysiques	Basse anomalie radiométrique		
	Haute anomalie magnétique		
Critère géochimique Anomalie Ni-Cu dans les sédiments de lac			


Cette méthode innovante de ciblage a mené à une cartographie prévisionnelle des roches ultramafiques à mafiques propices à contenir des minéralisations en Ni-Cu magmatique. Plusieurs cibles ont été validées par des roches ultramafiques connues.

4 CIBLAGE DES SECTEURS FAVORABLES AUX EGP D'APRÈS LE DIAGRAMME RATIO-ARACHNIDE EGP

La banque de données lithogéochimiques du SIGÉOM 2014 est l'une des plus grandes au Québec avec plus de 320 000 échantillons; elle sera la base de données sources pour le traitement avec le diagramme RA-EGP.

Le diagramme RA-EGP utilise seulement six éléments. Pour un profil complet il est donc capital d'avoir ces six éléments analysés et avec des valeurs au-dessus des seuils de détection. Après un filtrage sur ces critères sur la grande banque de données, 141 échantillons sont retenus (**Figure 4A**). Parmi ces échantillons retenus, 85 % se trouvent dans un rayon d'un kilomètre autour d'un gîte d'EGP, de Ni, ou de Ni-Cu connu. Il y a ainsi 15 % des échantillons qui ne sont associés à aucun gîte connu (**Figure 4B**). L'intérêt de cette partie est d'évaluer leur potentiel à partir de leur profil dans le diagramme RA-EGP afin de distinguer les échantillons favorables à contenir des minéralisations en EGP versus ceux non favorables.

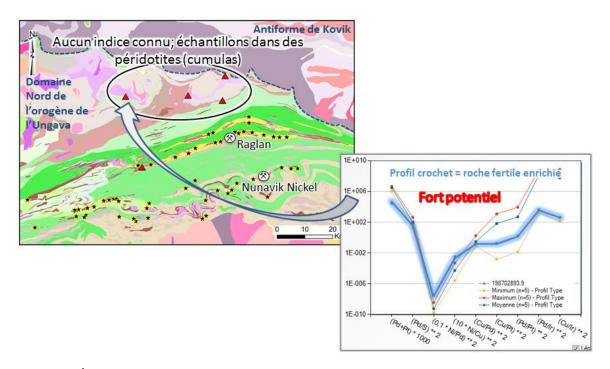


Figure 4 : A) Distribution des échantillons utilisables dans le diagramme RA-EGP (triangle vert), ayant les analyses requises et avec des seuils de détection supérieurs à la limite. B) Distribution des échantillons utilisables à l'extérieur d'un buffer de 1 km autour des gîtes d'EGP, de Ni, et de Ni-Cu connus (triangle rouge). Les surfaces colorées sont les différentes sous-provinces géologiques au Québec d'après SIGÉOM 2014.

Les **Figures 5**, **6**, et **7** présentent quelques études de cas d'échantillons avec les bonnes analyses chimiques et isolés de gîtes métalliques connus. Les caractéristiques complètes des échantillons favorables sont décrites dans l'**ANNEXE A**.

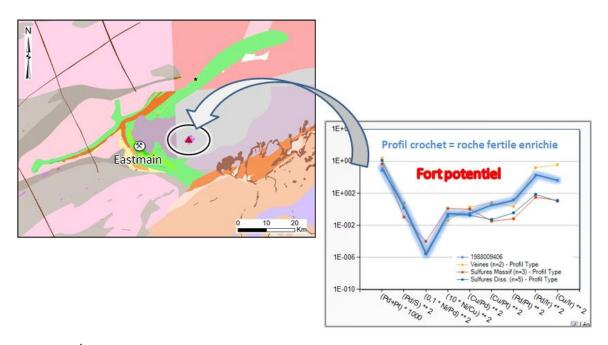

La **Figure 5** illustre le cas d'un ensemble d'échantillons localisés au nord de la mine Raglan, dans le domaine nord de l'Orogène de l'Ungava. Ces échantillons démontrent un excellent potentiel à contenir des minéralisations en EGP d'après leurs profils dans le diagramme RA-EGP. Les profils sont similaires à ceux du gisement magmatique-hydrothermal de Rathbun en Ontario. Cela suggère alors que les systèmes ciblés seraient différents de Raglan. Les échantillons favorables sont contenus dans les péridotites du Groupe de Watts. Bien qu'aucun indice ne soit connu dans le secteur ciblé, SIGÉOM rapporte 13 indices de Cu, et Pd, dans les roches mafiques et ultramafique du Groupe de Watts un peu plus à l'ouest, démontrant ainsi l'intérêt pour ce secteur.

Figure 5: Étude de cas sur un ensemble d'échantillon au nord de la mine Raglan. Les triangles rouges indiquent les échantillons utilisables dans le diagramme RA-EGP et isolés de gîtes connus. Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux du gisement de Rathbun en Ontario. Géologie d'après SIGÉOM 2014.

La **Figure 6** illustre le cas d'un échantillon à la Baie-James. Au moment de la réalisation du projet aucun indice de Ni, de Ni-Cu et d'EGP n'avait été rapporté autour de l'échantillon. Cet échantillon qui se trouve dans une intrusion de péridotite a été testé. Il présente un profil très favorable pour contenir des minéralisations en EGP. Ce profil est similaire à celui du gisement de Raglan. Ainsi, l'intérêt pour l'exploration de cette intrusion est mis en évidence. La méthode d'évaluation du potentiel en EGP par le diagramme RA-EGP semble bien fonctionner puisque des travaux très récents de la compagnie Eastmain Resources Inc. ont rapporté des minéralisations titrant 2,82 % Ni; 0,6 % Cu; 2,5 ppm EGP dans cette même intrusion ultramafique (Eastmain Resources Inc., 2014).

Figure 6 : Étude de cas à la Baie-James à proximité de la mine d'or Eastmain. Le triangle rouge indique l'échantillon utilisable dans le diagramme RA-EGP et isolé de gîtes connus. Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux du gisement de Raglan. Géologie d'après SIGÉOM 2014.

La **Figure 7** illustre un cas d'échantillons favorables à contenir des minéralisations en EGP dans la ceinture de roches vertes de Belleterre, au sud de l'Abitibi. Deux échantillons faisant partie des komatiites du Groupe de Baby (cf., Mainville 1994; Barnes et al., 1993) démontrent un potentiel favorable d'après leur profil dans le diagramme RA-EGP. Bien que le « crochet » ne soit pas aussi prononcé que les cas précédents, ce profil est similaire aux komatiites minéralisées en Ni et Cu (différent du profil Raglan). Par ailleurs, SIGÉOM indique que 7 indices de Cu, Ni-Cu, Co, Pd sont répertoriés dans ce Groupe de Baby, ce qui donne encore plus de poids à ces cibles.

Figure 7 : Étude de cas dans la ceinture de roches vertes de Belleterre. Le triangle rouge indique l'échantillon utilisable dans le diagramme RA-EGP et isolé de gîtes connus. Les profils en arrière du profil bleu (l'échantillon d'étude) sont ceux des gisements de Ni-Cu dans les komatiites (différents de Raglan). Géologie d'après SIGÉOM 2014.

Au total treize cibles ont été générées à partir de cette approche de profil favorable dans le diagramme RA-EGP.

5 CIBLAGE POUR LE NI PAR UNE CARTOGRAPHIE PRÉVISIONNELLE DES ROCHES ULTRAMAFIQUES ET RICHES EN NI

La méthode proposée pour le ciblage est une superposition de couches de données radiométriques, de données de gradient vertical, et de données de Ni dans les sédiments de lac (**Figure 8**). Lorsque les trois critères sont positifs, une cible est générée.

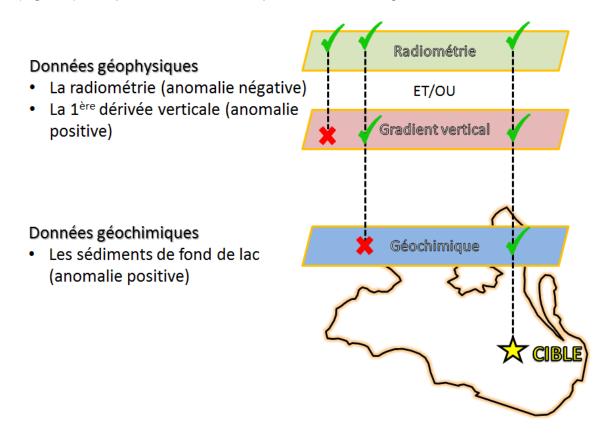


Figure 8: Schéma conceptuel de la méthode de ciblage par superposition de couches géoscientifiques.

Rafini (2015) a conclu que le Cu et surtout le Ni sont efficacement tracés dans l'environnement secondaire par les sédiments de lac (**Figure 9**). Dès lors que des données de sédiments de lac sont disponibles, il devient pertinent de les utiliser lorsque le ciblage porte sur des systèmes à Ni-Cu.

Élément Substance	9	Ruisseaux (1)		Lacs(1)(2)		Sols ⁽³⁾		Till ⁽⁴⁾	
	Substan	Efficacité	Remarque	Efficacité	Remarque	Efficacité	Remarque	Efficacité	Remarque
Cu	Cu	***	- (***	→	***	Hor C ; rehauss ^t phyllo (3)	***	Fraction fine ; rehauss! Al ou RN (4)
Zn	Zn	****	-	*	-	***	Hor C ; rehauss ^t phyllo (3)	***	Fine (rehauss ^t Al); mx lourds (val brutes) (4)
Pb	Pb	****	-	Ineff.		***	Hor C ; rehauss ^t phyllo (3)	-	Fine (rehausst Al); mx lourds (val brutes) (4)
Ni	Ni	****	Correction /Cr	***) 🗸	Ineff.	-	-	-

Figure 9: Efficacité du traçage des éléments par différentes méthodes dans l'environnement secondaire. D'après Rafini (2015).

L'intérêt général de cette approche est d'établir une cartographie prévisionnelle pour des secteurs peu cartographiés du Supérieur. Cela pourrait mener à cibler de nouveaux secteurs propices à l'exploration pour le Ni-Cu.

5.1 Secteur d'étude et données disponibles

Le secteur d'étude couvre 50 feuillets SNRC au 1:50 000 (entièrement ou en partie) : 23E05, 23E12, 23E13, de 33A01 à 33A16, 33B01, 33B02, de 33B07 à 33B10, 33B15, 33B16, de 33G09 à 33G16, de 33H01 à 33H04, de 33H08 à 33H16, de 33I01 à 33I08, 33J01. La **Figure 10** présente la géologie telle qu'elle est connue dans le secteur d'étude. Ce secteur est divisé en deux parties :

- au nord il s'agit d'une zone où la géologie est bien contrainte car 16 levés géologiques ont été menés par le MERN depuis 2010 (Bandyayera et al., 2010; Burniaux et Bandyayera, 2010; Burniaux, et al., 2013, 2014, 2014; Gigon et al., 2014; Hammouche et al., 2012, 2013, 2013; Kharis et al., 2013; Mathieu et al., 2011, 2011; Morin et Gosselin, 2011; Simard et Lafrance, 2010, 2011, 2011a);
- au sud le contraste de précision sur la géologie est frappant, car à l'exception de la ceinture d'Eastmain qui a été cartographiée à plusieurs reprises dans les années 1980 (cf., Hocq, 1985, Couture 1987, et Roy, 1986, 1988), le reste de ce secteur sud est très mal connu. L'intérêt d'une cartographie prévisionnelle par le ciblage des roches ultramafiques devient alors pertinent.

Au total 109 corps de roche ultramafique sont connus (SIGÉOM 2014), ce qui représente 0,38 % de la surface du secteur d'étude. Aucun indice de Ni, Ni-Cu, ou EGP n'est connu dans le secteur. Cette absence est statistiquement peu probable compte tenu que les sous-provinces hôtes du secteur d'étude contiennent des minéralisations en Ni, Ni-Cu, et EGP. Une explication pourrait être que la couverture cartographique insuffisante n'a pas à ce jour permis de découvrir des indices de Ni, Ni-Cu, et EGP dans ce secteur.

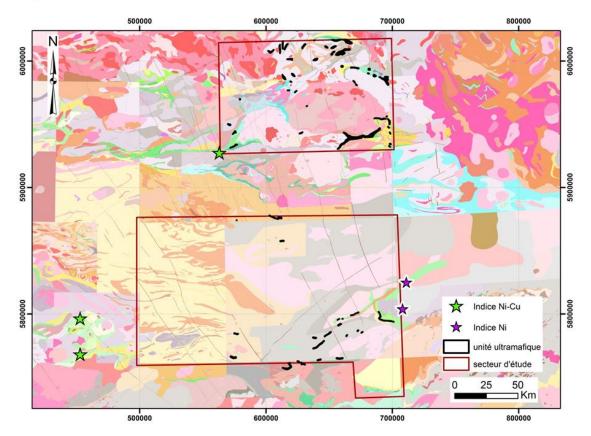
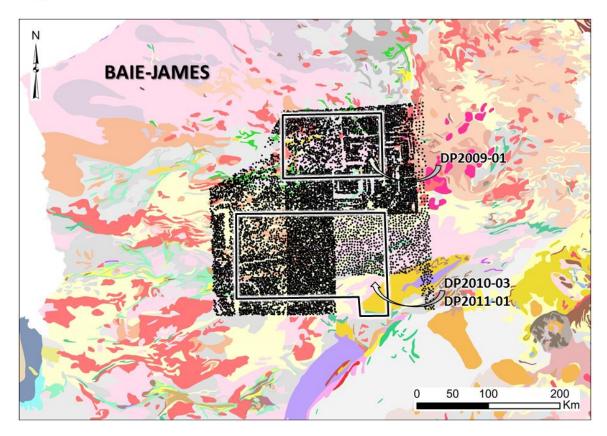
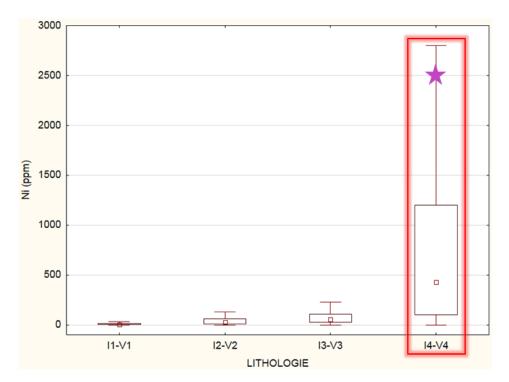
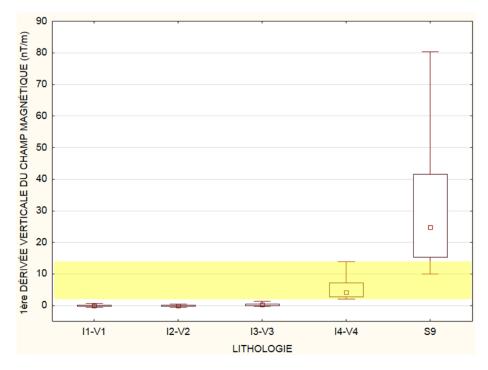



Figure 10: Géologie du secteur d'étude d'après SIGÉOM 2014.

Des données de géophysique et de géochimie de sédiments de lac sont disponibles. Pour la géophysique, trois levés magnétiques et radiométriques couvrent les secteurs (**Figure 11**). Il s'agit de DP 2009-01 (Goldak Airborne Surveys, 2009) et de DP 2010-03 et DP 2011-01 (D'Amours, 2010, 2011) qui ont été volés avec des lignes de vol au 250 m. En ce qui concerne les sédiments de lac, neufs levés couvrent le secteur d'étude contenant 9 361 analyses (**Figure 11**; SIGÉOM); 92 % sont des ré-analyses par ICP-MS fait entre 2010 et 2012 tans que le 8% provient d'analyses originales par ICP-AES (SIGEOM 2014).


Figure 11: Secteur d'étude à la Baie-James et données disponibles. Les points noirs indiquent les sédiments de fond de lac d'après SIGÉOM. Les polygones à bordures noires et blanches indiquent les levés magnétiques et radiométriques. Géologie générale en arrière-plan d'après SIGÉOM 2014.

5.2 Validation de la méthode à la Baie-James


Quelques éléments de statistique permettent de porter un regard critique sur la méthode et sa validité à la Baie-James.

Les roches ultramafiques fraîches sont statistiquement plus favorables à contenir de plus fortes teneurs en Ni en comparaison avec les autres roches ignées (**Figure 12**). La médiane du Ni dans les roches ultramafiques est dix fois supérieure à celles des roches intermédiaires à mafiques. Ainsi, les hautes valeurs en Ni dans les roches fraîches indiquent statistiquement des roches ultramafiques. Concernant le gradient vertical, les roches ultramafiques sont bien discriminées par rapport aux autres roches ignées (**Figure 13**). En revanche, les formations de fer sont susceptibles d'induire un biais si les hautes valeurs du gradient sont considérées seulement comme étant des roches ultramafiques. Cela implique que pour pouvoir appliquer la méthode des hautes valeurs du gradient vertical comme indicateur des roches ultramafiques, il faut filtrer les données du gradient vertical en excluant toutes les valeurs supérieures à 14 nT/m, qui est la valeur maximale connue du gradient vertical dans les roches ultramafiques.

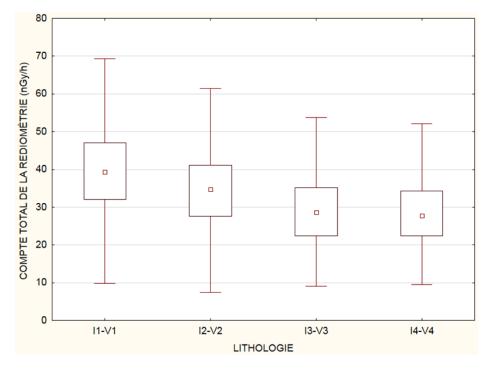
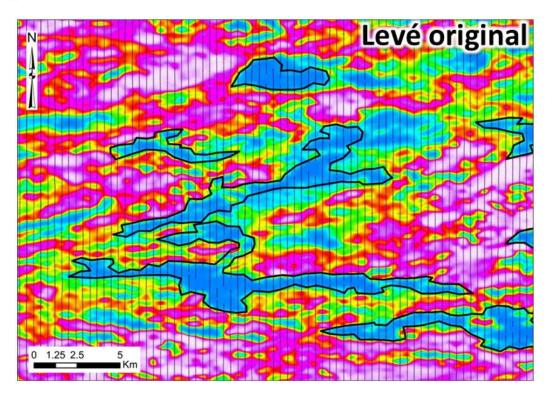

Figure 12: Contenu en nickel dans les roches fraîches (-1<PAF<3) selon les lithologies ignées à la Baie-James (N = 52 295; SIGÉOM 2014). I1-V1 : roches felsiques; I2-V2 : roches intermédiaires; I3-V3 : roches mafiques; I4-V4 : roches ultramafiques. L'étoile mauve indique le seuil (2 500 ppm Ni) au-delà duquel une valeur devient un indice d'après SIGÉOM.

Figure 13: Valeur de gradient vertical selon des lithologies à la Baie-James. D'après les levés DP 2009-01 et DP 2011-01 - N= 995 403. I1-V1 : roches felsiques; I2-V2 : roches intermédiaires; I3-V3 : roches mafiques; I4-V4 : roches ultramafiques; S9 : formations de fer.



Contrairement aux deux précédents paramètres pour lesquels la méthode est validée, les faibles valeurs de radiométrie ne sont pas discriminantes des roches ultramafiques (**Figure 14**). Il est possible de distinguer une légère tendance vers les plus faibles valeurs lorsque les roches sont moins différenciées, mais il n'est pas possible d'établir une valeur de seuil discriminante pour les roches ultramafiques. La radiométrie est une méthode géophysique très sensible en comparaison avec le magnétisme. En effet, la profondeur de pénétration dans le sol n'est que de quelques centimètres, et les mesures sont grandement influencées par les paramètres environnementaux (IAEA, 2013), notamment la présence de lac et de marais (**Figure 15**). Ainsi, un filtrage des valeurs brutes de la radiométrie est nécessaire pour espérer pouvoir utiliser ce paramètre lors du ciblage.

Figure 14: Valeurs de radiométrie selon les lithologies ignées à la Baie-James. D'après le levé DP 2009-01 - N= 104549. I1-V1 : roches felsiques; I2-V2 : roches intermédiaires; I3-V3 : roches mafiques; I4-V4 : roches ultramafiques.

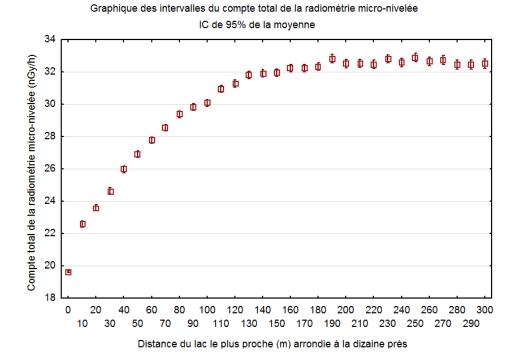


Figure 15 : Carte radiométrique originale dans le levé DP 2011-01. Le contour en noir indique les bordures des lacs majeurs. Les lignes verticales indiquent les points de mesure.

5.3 Filtrage des données géophysiques

Les valeurs de gradient vertical supérieures à 14 nT/m sont exclues pour enlever le biais dû aux formations de fer. Pour la radiométrie, la **Figure 16** indique que les valeurs de radiométrie sont influencées jusqu'à une distance de 130 m du bord du lac. Les valeurs de radiométrie se stabilisent au-delà de cette distance. En d'autres termes, les valeurs comprises à l'intérieur d'une zone de 130 m autour d'un lac sont biaisées. Ainsi, pour le filtrage toutes les données de radiométrie comprises dans cette zone sont exclues.

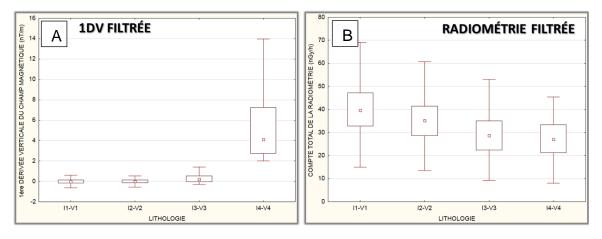


Figure 16: Influence de la distance au bord du lac sur le compte total de la radiométrie (nGy/h). Le point d'inflexion à 130 m marque la limite de la zone d'influence. D'après les données radiométriques du levé DP 2011-01 (D'Amours, 2011).

Les résultats du filtrage sur la géophysique sont présentés aux **Figures 17A** et **17B**. Suite à l'exclusion des formations de fer, les roches ultramafiques sont les unités lithologiques ayant les plus fortes valeurs de gradient vertical (**Figure 17A**). Le ciblage des roches ultramafiques par les hautes anomalies positives du gradient vertical est désormais applicable. Concernant la radiométrie, malgré l'exclusion des données de lacs et de marais les roches ultramafiques ne sont toujours pas discriminées des autres lithologies (**Figure 17B**). Il semble donc que le contrôle principal des valeurs radiométriques provienne d'un paramètre autre que les lacs et marais, probablement la couverture glaciaire. À la différence du secteur d'étude du projet 2007-02B dans le Grenville où la couverture quaternaire était restreinte, cette couverture est dominante à la Baie-James comme en témoigne les profondeurs de mort terrain dans les forages (cf. SIGÉOM).

La radiométrie n'est donc pas utilisable à la Baie-James. La combinaison optimale pour le ciblage des roches ultramafiques et riches en Ni à la Baie-James est le gradient vertical couplé au Ni dans les sédiments de lacs.

Figure 17: Données géophysiques filtrées présentées sous forme de boites à moustache. A) Gradient vertical; B) Radiométrie.

5.4 Filtrage des données géochimiques

Pour une utilisation rigoureuse des données de sédiments de lacs, les valeurs brutes doivent être filtrées, car plusieurs paramètres tels que les méthodes d'échantillonnage et d'analyses ainsi que l'environnement secondaire biaisent le signal (Trépanier, 2006 et Rafini, 2015). Il est donc capital de traiter ces données brutes, ce par deux méthodes successives : (1) un nivellement des levés pour résoudre les problèmes de décalages aux bordures des levés, puis (2) un traitement statistique pour annuler l'influence des paramètres environnementaux.

La **Figure 18** présente les valeurs brutes du Cu dans les sédiments de lac du secteur d'étude. À noter que le Cu est présenté ici, plutôt que le Ni, car les propos suivants sont mieux illustrés avec le Cu. Plusieurs « failles de levés » sont clairement identifiables, notamment dans la partie sud-est du secteur. De façon générale elles sont attribuables aux différences dans les méthodes analytiques, aux différences dans les méthodes d'extraction pour les analyses partielles (ICP-MS, ICP-ES, AA¹), ou aux différences dans les méthodes d'échantillonnage. Dans cette zone, les échantillons d'un levé sont analysés par ICP-ES, alors que les échantillons des autres levés sont analysés par ICP-MS. Cette différence d'analyse est la raison principale du décalage des valeurs. La correction se fait par un nivellement aux bordures des levés. Ce nivellement est réalisé avec le logiciel développé au CONSOREM. La **Figure 19** présente les levés du Cu nivelés. Les « failles de levés » sont corrigées.

¹ ICP: Spectrométrie à plasma à couplage inductif, ES = spectroscopie d'émission, AA = Absorption atomique

Projet CONSOREM 2014-07: Ni-Cu-EGP au Québec : Intégration des projets CONSOREM et ciblage

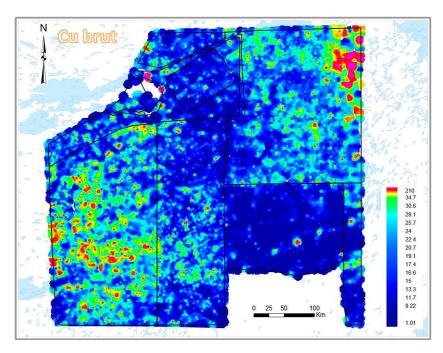


Figure 18 : Valeurs brutes du Cu dans les sédiments de lac avec les différents levés (contour noir).

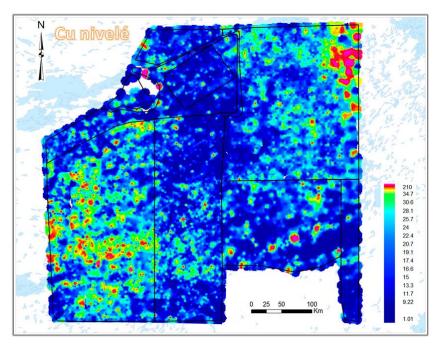
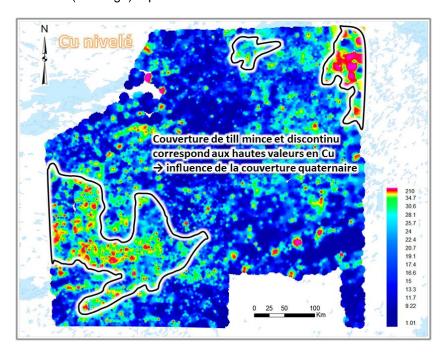



Figure 19 : Valeurs nivelées du Cu dans les sédiments de lac avec les différents levés (contour noir).

Une fois la correction appliquée sur les levés, il faut corriger les paramètres environnementaux tels que la couverture quaternaire et la profondeur des lacs. Le secteur est largement couvert par le till et les lacs (Ressources Naturelles Canada, site WEB). La majeure partie du secteur est constituée en surface par du till épais et continu, le reste étant un till mince et discontinu. Le type de dépôt de surface influence grandement la valeur en métal dans les sédiments de lac (**Figure 20**). Pour corriger ce biais environnemental, la méthode statistique de régression spatiale est efficace. Il s'agit d'une méthode qui, en chaque point de sédiment de lac, détermine une valeur prédite en fonction

des valeurs connues, aux points voisins, en divers éléments choisis. Le résultat est une valeur résiduelle qui est le rapport de la valeur observée sur la valeur prédite (en valeur logarithmique). Les **Figures 21** et **22** présentent les résultats finaux après la régression spatiale pour le Cu et le Ni. Les hautes valeurs (en rouge) représentent alors de vraies anomalies en ces substances.

Figure 20 : Contour de la couverture de till mince et discontinu, alors que l'extérieur est essentiellement couvert par du till épais et continu. Valeurs nivelées du Cu dans les sédiments de lac.

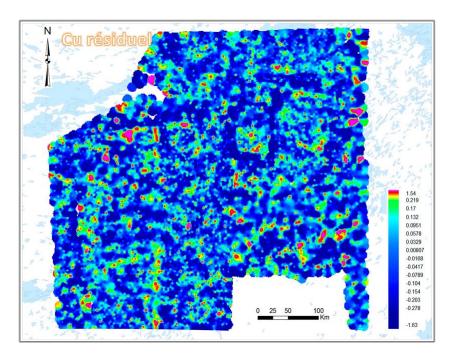


Figure 21: Distribution des valeurs de Cu résiduel pour le secteur d'étude.

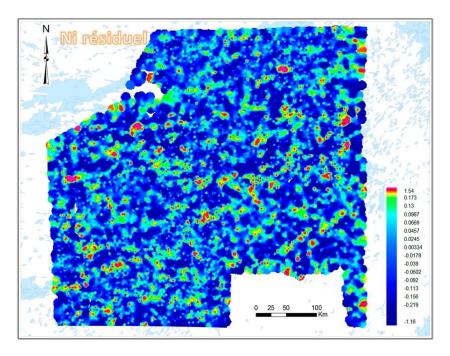


Figure 22: Distribution des valeurs de Ni résiduel pour le secteur d'étude.

5.5 Méthode de logique floue

La méthode pour la cartographie prévisionnelle est la logique floue. Cette méthode repose sur le principe d'appartenance d'un objet à un ensemble dans un système binaire (appartenance=vrai; non-appartenance=faux). Dans la théorie de la logique floue, cette appartenance binaire est remplacée par une échelle continue entre 0 et 1 (**Figures 23 et 24**). En termes d'exploration, les secteurs les moins favorables tendent vers la valeur 0, alors que les plus favorables tendent vers la valeur 1.

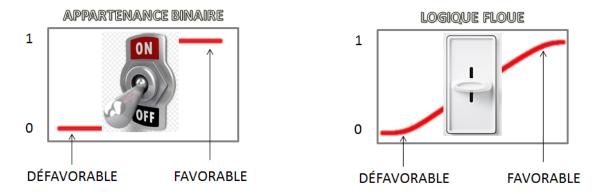


Figure 23 : Schéma conceptuel du principe de la méthode de logique floue.

Pour obtenir une carte de logique floue il faut convertir les couches de données en couches d'appartenance floue, ici les couches de dérivée verticale filtrée et de Ni résiduel dans sédiments

de lac. Le traitement se fait avec le module *spatial analyst* dans ArcGIS 10.1. La fonction « *fuzzy membership* » permet ces transformations en couches d'appartenance floue. Les paramètres utilisés pour obtenir la couche d'appartenance floue de sédiments de lac sont les suivants : « *MSLarge* » comme type d'appartenance, et 1 et 1 pour « *mean multiplier* et *standart deviation multiplier* ». Les paramètres utilisés pour obtenir la couche d'appartenance floue du gradient vertical sont les suivants : « *Linear* » comme type d'appartenance avec un minimum de -0,8 (nT/m) et un maximum de 2 (nT/m). Ces valeurs sont optimales pour le secteur d'étude, car l'appartenance complète des roches ultramafiques commence à 2 nT/m (**Figure 24**).

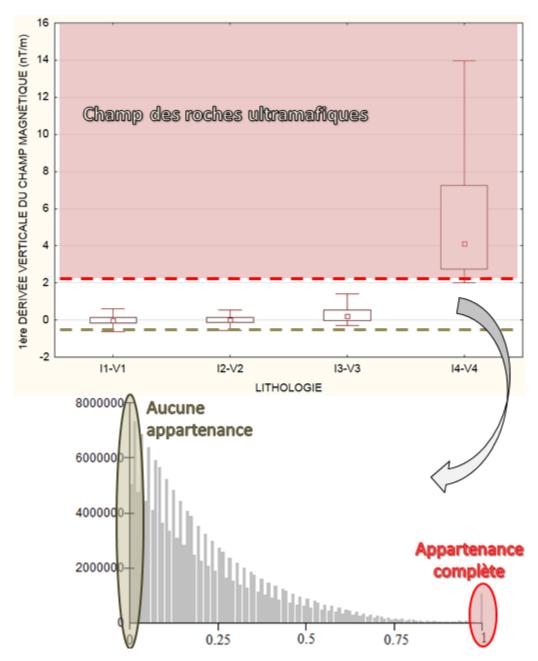


Figure 24 : Conversion des données brutes du gradient vertical en couche d'appartenance floue.

La couche de gradient vertical est calibrée pour les roches ultramafiques puisque les champs sont limités. La logique floue appliquée à cette couche va spécifiquement cibler les roches

ultramafiques. Il faut une valeur anomale de la couche de Ni dans les sédiments de lacs combinée à une valeur anomale de la couche du gradient vertical pour qu'il y ait une cible, alors, une roche ultramafique n'ayant pas de valeur anomale en Ni ne sera pas ciblée. Ainsi, la superposition des deux couches (**Figure 25**) permet un ciblage des roches ultramafiques et riches en Ni. Cette combinaison se fait avec la fonction « *fuzzy overlay* ». Les paramètres utilisés sont les suivants : *Overlay type Gamma 0,2*.

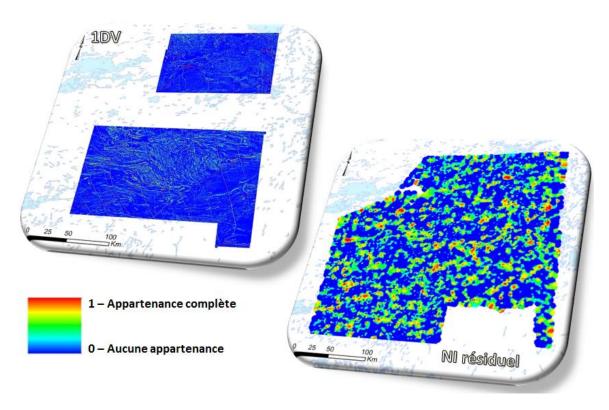
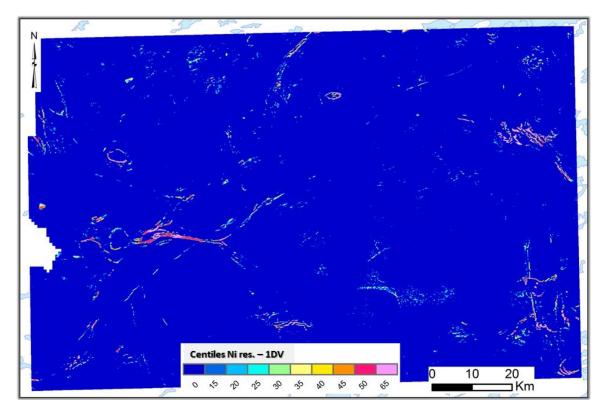


Figure 25 : Couches d'appartenance floue du gradient vertical et du Ni résiduel.


5.6 Ciblage des roches ultramafiques et riches en Ni à la Baie-James

La combinaison des couches de Ni résiduel et de gradient vertical filtré à la Baie-James est illustrée aux **Figures 26** et **27**. En se calibrant sur des roches ultramafiques connues et riches en Ni, d'après SIGÉOM 2014 (cf. **Figure 10**), le seuil de 50° centile est la limite inférieure pour le ciblage. Malgré les filtres appliqués certaines anomalies (i.e., supérieure au 50° centile) peuvent être expliquées par d'autres lithologies que les roches ultramafiques. Ces fausses anomalies peuvent représenter des formations de fer ou des dykes de diabase. En effet, la signature en gradient vertical des formations de fer inférieures au 20° centile est dans le champ des roches ultramafiques (**Figure 13**).

Ainsi, un nouveau filtrage est nécessaire pour résoudre ce problème des fausses anomalies. Ce filtre consiste à passer en revue toutes les anomalies des **Figure 26** et **27**, et de les confronter avec les lithologies connues, d'après les cartes géologiques, les affleurements de géofiche, et les affleurements de compilation dans SIGÉOM 2014. Les **Figures 28** et **29** présentent le produit final

de cartographie prévisionnelle des roches ultramafiques dans les secteurs nord et sud. Certaines cibles forment des grappes, alors que d'autres sont isolées.

Figure 26 : Combinaison des couches d'appartenance floue du gradient vertical et du Ni résiduel dans le secteur nord.

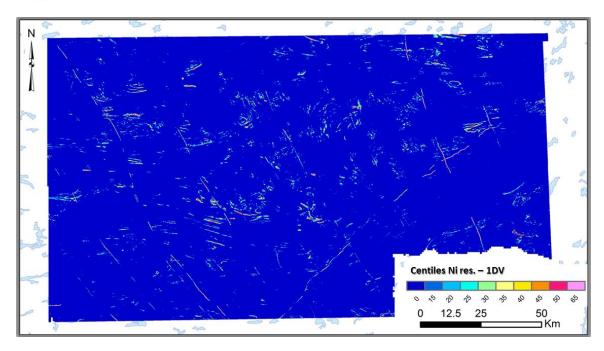


Figure 27 : Combinaison des couches d'appartenance floue du gradient vertical et du Ni résiduel dans le secteur sud.

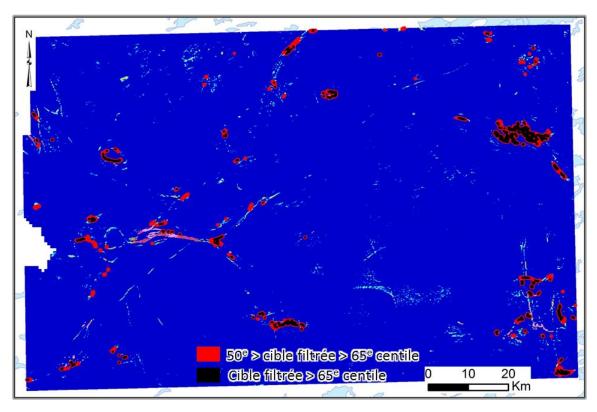


Figure 28 : Cibles filtrées (finale) pour les roches ultramafiques (>50° centile) en rouge et noir. Secteur nord.

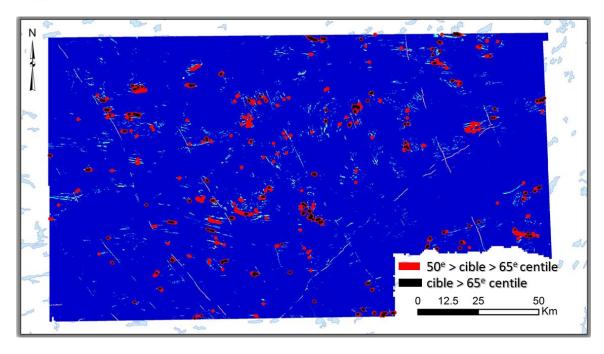
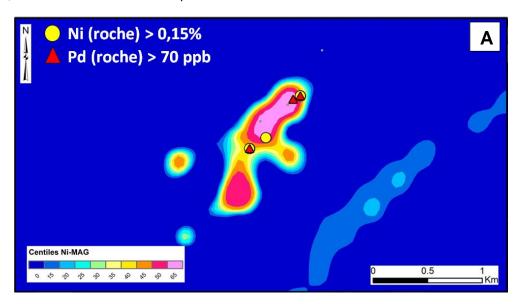
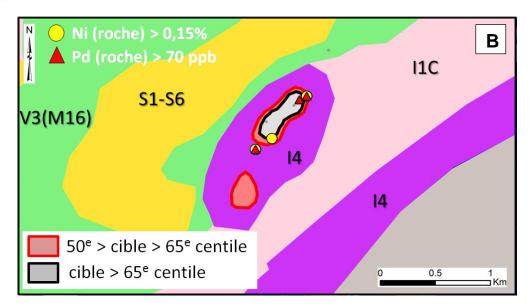




Figure 29: Cibles filtrées (finale) pour les roches ultramafiques (>50e centile) en rouge et noir. Secteur sud.

Dans le secteur d'étude aucun indice de Ni-Cu-EGP n'est rapporté. Ainsi, pour pouvoir classer les anomalies selon leur potentiel, le paramètre pour se calibrer est le contenu en Ni-Cu-EGP dans les roches. Dans cette région du Québec, un indice en Ni est considéré à partir de 0,25 %, et 500 ppb pour les EGP (SIGÉOM). Les **Figures 30 A** et **30B** présentent un exemple de cible et la manière dont elle est évaluée. L'image A indique que plusieurs roches dans la cible contiennent des anomalies en Ni (la médiane du Ni dans les roches ultramafiques étant d'environ 0,05 %, cf. **Figure 12**) et en EGP, ce qui met en valeur le caractère métallique anomal de cette cible. En confrontant avec les lithologies connues, image B, cette cible coïncide avec une intrusion ultramafique connue. À remarquer aussi que l'autre intrusion ultramafique au sud-est n'a pas été ciblée, car son contenu en Ni n'est pas anomal.

Figure 30: Exemple de cible de priorité 1. A) La carte de combinaison de couche d'appartenance floue du Ni résiduel et du gradient vertical filtré. Les valeurs supérieures au 50° centile sont des cibles. Des valeurs en Ni et EGP dans la roche sont présentés respectivement par des points jaunes et des triangles rouges. B) Lithologie connue: I4 – intrusion ultramafique, I1C – granodiorite, S1-S6 - grès, V3(M16) – basalte (amphibolite).

Pour le secteur d'étude, les cibles ont été évaluées par un examen complet au regard de plusieurs paramètres, incluant le contexte géologique, la distance à une roche ultramafique connue, et le contenu en métal (surtout Ni et Cu) dans ces roches (**ANNEXE B**).

Trois catégories de cibles sont proposées selon leur potentiel :

<u>Cibles de priorité 1</u>: critère lithologique, c'est-à-dire contenu dans des roches ultramafiques, ainsi que des valeurs anomales en Ni dans la roche. Un total de 15 km² de cible de priorité 1;

<u>Cibles de priorité 2</u>: critère lithologique, contenu ou à proximité de roches ultramafiques, et aussi présence de formation de fer marqueur des horizons de roche ultramafique dans le secteur nord. Pas de critère métal dans la roche. Autre élément, le critère magnétique, une structure magnétique circulaire ou continue typique d'une intrusion ou d'un filon-couche. Un total de 9,9 km² de cible de priorité 2;

<u>Cibles de priorité 3</u>: pas suffisamment d'information géologique pour évaluer le potentiel. Un total de 25,3 km² de cible de priorité 3.

5.7 Discussion

Le rôle des matériaux riches en soufre dans la genèse des gisements de Ni, Ni-Cu, et EGP est majeur (cf. Barnes et Lightfoot, 2005). La contamination du magma par ces matériaux permet la saturation en soufre et la cristallisation de sulfures. Ces matériaux sont souvent constitués de sédiments fins. La **Figure 31** présente les relations spatiales entre les sédiments du secteur nord et les cibles pour les roches ultramafiques riches en Ni. La corrélation spatiale est plutôt bonne, avec une plus grande quantité de cibles dans les environnements où les sédiments sont présents. La présence de sédiments riches en soufre pourrait être regardée comme critère pour l'exploration du Ni-Cu-EGP.

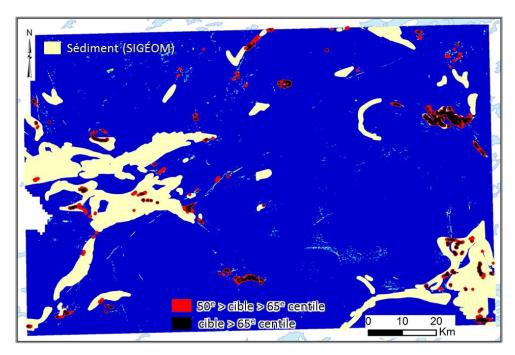


Figure 31 : Distribution des cibles (rouge et noir) et des sédiments pour le secteur nord.

6 CONCLUSIONS

Ce projet présente représente une intégration synthèse de plusieurs projets CONSOREM portant sur le Ni-Cu-EGP magmatique. Chacun des projets a apporté une contribution par des méthodes et des réalisations distinctes. On y a mis l'emphase sur la géochimie (e.g., roche, sédiment de lac), la géophysique (e.g., gradient vertical, tomographie sismique), la géologie structurale (e.g., failles transcrustales), et la pétrologie (e.g., type de magma). Les réalisations ont été de deux types : des outils géochimiques d'aide à l'exploration, et des cartes de potentiel.

Parmi toutes les approches méthodologiques revues, deux ont été distinguées et mises en valeur lors de ce projet, essentiellement car de nouvelles données provenant du MERN permettent des applications pertinentes avec ces deux approches. Il s'agit de la méthode de discrimination d'une signature de magma fertile pour des minéralisations en EGP d'après un profil de ratio d'éléments dans l'outil géochimique RA-EGP (projet 2003-09), et de la méthode de cartographie prévisionnelle des roches ultramafiques en combinant des données de radiométrie, du gradient vertical, et de Ni dans les sédiments de lac (projet 2007-02B).

Pour la discrimination des magmas fertiles pour les EGP, treize cibles sont proposées dans différentes régions au Québec. Pour la méthode de cartographie prévisionnelle des roches ultramafiques, il a fallu adapter la méthode initiale à la région d'étude qui est la Baie-James. En effet, l'importante couverture de l'environnement secondaire (e.g., till, lacs, marais) a nécessité l'application de nombreux filtres et l'exclusion des données qui comportaient trop de biais, notamment la radiométrie. Au final, l'évaluation optimale s'est faite avec le gradient vertical filtré, après l'exclusion des lithologies de formations de fer, et le Ni résiduel dans les sédiments de lac, après nivellement et traitement statistique de rehaussement des anomalies par régression spatiale. Trois catégories de cibles sont alors proposées selon leur potentiel à contenir des roches ultramafiques riches en Ni. La combinaison des couches du gradient vertical et du Ni permet de

cibler 15 km² de territoires de hautes priorité, 9,9 km² de priorité moyenne, et 25 km² de plus faible priorité. Ces cibles sont généralement de petites dimensions similaires à des filons-couches ou des coulées chenalisées, ce qui pourrait s'apparenter au modèle gîtologique de type Raglan.

REMERCIMENTS

Je remercie en premier lieu Isabelle d'Amours (GDS) pour ses précieux conseils de traitement de la géophysique. Je remercie également les géologues du MERN, notamment Siham Benhamed et Pénélope Burniaux pour les discussions très pertinentes. Enfin, je remercie mes collègues du CONSOREM pour les échanges constructifs indissociables de la réussite du projet. Ce rapport a bénéficié de la revue éditoriale et scientifique de Brigitte Poirier et de Réal Daigneault.

RÉFÉRENCES

Bandyayera, D., Chapon, B., et Burniaux, P., 2010. Géologie du secteur du lac Fontay; Ministère de l'Énergie et des Ressources Naturelles, Québec; CG-33G16, 1 carte.

Barnes, S.J., Couture, J.F., Sawyer, E.W., et Bouchaib, C., 1993. Nickel –Copper occurrences in the Belleterre-Angliers belt of the Pontiac Subprovince and the use of Cu-Pd ratios in intepreting platinum-group element distributions. Economic Geology, Vol. 88, pp. 1402-1418.

Barnes, S.J., et Lightfoot, P.C., 2005. Formation of magmatic mickel-sulfide ore deposits and processes affecting their copper and platinum-group element content. In: Hedenquiste, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (eds.). Economic Geology 100th Anniversary Volume, pp. 179-213.

Burniaux, P., et Bandyayera, D., 2010. Géologie du secteur du lac Magin; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33G09, 1 carte.

Burniaux, P., Hammouche, H., et Kharis, A., 2013. Géologie du secteur des collines Pontard; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H16, 1 carte.

Burniaux, P., Guemache, M.A., Gigon, J., et Goutier, J., 2014. Géologie du secteur du Lac Thier; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H09, 1 carte.

Burniaux, P., Guemache, M.A., Gigon, J., et Goutier, J., 2014. Géologie du secteur du lac Savonnière; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H08, 1 carte.

Couture, J.F., 1987. Géologie de la partie occidentale de la bande volcanosédimentaire de la rivière Eastmain supérieure — rapport préliminaire ; ministère de l'Énergie et des Ressources, Québec ; MB 87-51, 110 pages.

D'Amours, I., 2010. Levé magnétique et spectrométrique aéroporté dans le secteur sud de LG4, Baie-James. Ministère des Ressources naturelles et de la Faune, Québec ; DP 2010-03, 16 pages, 120 plans, données numériques.

D'Amours, I., 2011. Levé magnétique et spectrométrique aéroporté dans le secteur la haute Eastmain, Baie-James. Ministère des Ressources naturelles et de la Faune, Québec ; DP 2011-01, 8 pages, 130 plans, données numériques.

Eastmain Resources Inc., 2014. Communiqué de presse (site Internet) : http://www.eastmain.com/wp-content/uploads/2014/09/Complete-NR-2014-07-Lac-Lessard-Results.pdf

Eckstrand, O.R., et Hubert, L.J., 2007. Magmatic nickel-copper-platinum group element deposit. In: Goodfellow, W.D. (ed), Mineral Deposit of Canada: A synthesis of major deposit types, district metallogeny, the evolution of geological Provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, pp. 205-222.

Faure, S., 2009. Structures crustales et potentiel des intrusions mafiques pour les minéralisations magmatiques de Cu-Ni-EGP dans le Grenville. Rapport 2008-05, Projet CONSOREM, 33 p.

Gigon, J, Burniaux, P., Gumache, M.A., et Goutier, J., 2014. Géologie du secteur du lac Laribosière; ministère de l'Énergie et des Ressources naturelles, Québec; CG-23E12, 1 carte.

Goldak Airborne Surveys, 2009. Levé spectrométrique et magnétique aéroporté sir le territoire de la Baie-James — blacs NW et SW du secteur LG-4. Ministère des Ressources naturelles et de la Faune, Québec; DP 2009-01, 83 pages, 144 plans, données numériques.

Hammouche, H., Burniaux, P., et Kharis, A., 2012. Géologie du secteur du lac Carmoy; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H11, 1 carte.

Hammouche, H., Burniaux, P., et Kharis, A., 2012. Géologie du secteur du réservoir La Grande ; ministère de l'Énergie et des Ressources naturelles, Québec ; CG-33H14, 1 carte.

Hammouche, H., Burniaux, P., et Kharis, A., 2013. Géologie du secteur du lac Orsigny; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H10, 1 carte.

Hocq, M., 1985. Géologie de la région des lacs Campan et Cadieux, Territoire du Nouveau-Québec; ministère de l'Énergie et des Ressources, Québec; ET 83-05, 190 pages, 4 plans.

IAEA, 2013. Guidelines for radioelement mapping using gamma ray spectrometry data. TECDOC-1363, 173 p.

Jébrak, M., et Marcoux, E., 2008. Géologie des gîtes minéraux. Ministère des Ressources naturelles et de la Faune, Québec, 667 p.

Kharis, A., Hammouche, H., et Burniaux, P., 2013. Géologie du secteur du lac Des Vœux; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H15, 1 carte.

Longuépée, H., et Mathieu, L., 2014. Fertlité des intrusions mafiques et ultramafiques pour les minéralisations Cu-Ni. Rapport 2008-11, Projet CONSOREM, 40 p.

Maier, D.W., et Groves, D.L., 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni-Cu deposits. Mineralium Deposita, Vol 46, pp. 841-857

Mainville, M., 1994. Les komatiites et tholéiltes à la base du Groupe de Baby, Témiscamingue. Thèse de Maîtrise, Université du Québec à Chicoutimi, 146 p.

Mathieu, G., Goutier, J., et Bandyayera, D., 2011. Géologie du secteur du lac Nochet; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H12, 1 carte.

Mathieu, G., Goutier, J., et Bandyayera, D., 2011. Géologie du secteur du lac Tilly; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33H13, 1 carte.

Mathieu, L., 2013. Exploration des gîtes magmatiques cuprifères dans la Province de Grenville. Rapport 2012-03, Projet CONSOREM, 49 p.

Morin, R., et Gosselin, C., 2011. Compilation géologie du secteur du lac Sauvolles ; ministère de l'Énergie et des Ressources naturelles, Québec ; CG-33H, 1 carte.

Pearson, V., 2007. Développement d'un nouvel outil d'exploration pour les EGP : le Diagramme Ratio-Arachnide, Rapport 2003-09, Projet CONSOREM, 35 p.

Rafini, S., 2015. Évaluation de l'efficacité des différentes techniques de géochimie de l'environnement secondaire. Rapport, projet CONSOREM 2012-04, 34 p.

Ressources Naturelles Canada — carte des dépôts de surface (site web) : https://www.rncan.gc.ca/sciences-terre/geographie/atlas-canada/cartes-thematiques-selectionnees/16877

Roy, C., 1986, Géologie de la bande volcano-sédimentaire de la rivière Eastmain supérieure, secteur de l'île Bohier; ministère de l'Énergie et des Ressources, Québec; DP 86-05, 2 plans.

Roy, C., 1988. Géologie du secteur de l'île Bohier de la bande volcanosédimentaire de la rivière Eastmain supérieure; ministère de l'Énergie et des Ressources, Québec; MB 88-16, 115 pages, 5 plans.

SIGÉOM, 2014. Site web: http://sigeom.mrn.gouv.qc.ca/signet/classes/l1102_indexAccueil?l=f

Simard, M., et Lafrance, I., 2010. Géologie du secteur du lac Kinglet; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33J, 1 carte.

Simard, M., et Lafrance, I., 2011. Géologie du secteur du lac Mistanukaw; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33I, 1 carte.

Simard, M., et Lafrance, I., 2011a. Géologie du secteur du lac Kinglet; ministère de l'Énergie et des Ressources naturelles, Québec; CG-33J, 1 carte.

Trépanier, S., 2006. Identification de domaines géochimiques à partir des levés régionaux de sédiments de fond de lac – Phase 2, Rapport 2005-06, Projet CONSOREM, 74 p.

Trépanier, S., 2008. Valorisation des données radiométriques pour l'exploration en Uranium et Ni-Cu ± EGP dans le Grenville. Partie B : Évaluation de potentiel minéral U, Cu-Au-U, et cartographie prévisionnelle d'intrusions mafiques – ultramafiques, Rapport 2007-02, Projet CONSOREM, 60 p.

Zientek, M.L., 2010. Magmatic ore deposits in layered intrusions – Descriptive model for Reef-Type PGE and Contact-Type Cu-Ni-PGE deposits. U.S. Geological Survey, Open File Report 2012-2010, 48 p.

ANNEXE A — CIBLES POUR LES EGP AU QUÉBEC EN UTILISANT LA MÉTHODE DU DIAGRAMME RATIO-ARACHNIDE

CIBLE_ID	Système	Fuseau	х	Y	NumeroEch	Nom Roche (SIGEOM)	S (ppm)	Cu (ppm)	Ni (ppm)	Pt (ppb)	Pd (ppb)	Ir (ppb)	Type de profil	Commentaire	Géophysique
2014_07_ EGP_1	NAD83	17	625 826	5 270 144	1 900 102 040	Komatiite	400	15	1288	10	10	1,32	KOMATIITE CU-NI	Ceinture volcanique de Belleterre-Anglier, groupe de Baby. Historiquement indices de Ni-Cu, Cu, Pd surtout dans des gabbros et pyroxénites. 4 mines : 2,3Mt @ env 0,6%Ni, env 0,75 % Cu, en 1 ppm EGP. Potentiel non démontré dans les komatiites	Haute anomalie positive du gradient vertical du magnétisme
2014_07_ EGP_2	NAD83	17	629 194	5 274 190	1 900 102 030	Ultram./ultrab.	1100	57	1179	12	11	1,32	RAGLAN	Ceinture volcanique de Belleterre-Anglier, groupe de Baby. Historiquement indices de Ni-Cu, Cu, Pd surtout dans des gabbros et pyroxénites. 4 mines : 2,3Mt @ env 0,6%Ni, env 0,75 % Cu, en 1 ppm EGP. Potentiel non démontré dans les komatiites	Lieux de haute anomalie positive du gradient vertical du magnétisme
2014_07_ EGP_3	NAD83	18	363 050	5 379 272	1 906 012 930	Amphibolite	300	38,4	222	10	10	200	AKAREM (TENDANCE PLAGIO- HORNBLENDITE)	Échantillon contenu dans des amphibolites ; pas d'indice connu à proximité	Au cœur d'une anomalie positive du gradient vertical du magnétisme. Les indices les plus proches sont contenus dans des unités ayant une signature magnétique similaire.

CIBLE_ID	Système	Fuseau	х	Y	NumeroEch	Nom Roche (SIGEOM)	S (ppm)	Cu (ppm)	Ni (ppm)	Pt (ppb)	Pd (ppb)	Ir (ppb)	Type de profil	Commentaire	Géophysique
2014_07_ EGP_4	NAD83	20	347 538	5 353 270	1 989 025 020	Dunite	300	7	2400	14	5	3	CHROMITITE±Ni- EGP	Site à proximité de 3 indices de chrome (chromitite massive, ± Ni et EGP) contenus dans une serpentinite du mélange ophiolitique de Nadeau	Haute anomalie positive du gradient vertical du magnétisme
2014_07_ EGP_5	NAD83	19	479 874	5 541 480	2 000 023 260	Péridotite	1300	46	413	4	2,6	40	KOMATIITE CU-NI POUR LES PREMIERS CRITÈRES, AKAREM POUR LES DERNIERS	Plusieurs indices de Ni et Ni-Cu reconnus dans les anorthosites, gabbros et gabbro-norites.	Le site correspond à un haut mag. Cependant les indices de Ni et Ni-Cu à proximité ne semblent pas être discriminés par leur signature magnétique qui est relativement basse (e.g., Outarde bloc sud et nord)
2014_07_ EGP_6	NAD83	19	299 978	5 803 588	1 988 009 410	Pyroxénite	10 100	2000	4900	291	566	4,2	RAGLAN	Indice non reconnu dans SIGÉOM 2014. Cependant les travaux récents de Eastmain Ressources démontrent un fort potentiel de cette intrusion ultramafique pour le Ni, Cu, EGP	Pas d'anomalie magnétique (levé du fédéral au 800 m seulement disponible)
2014_07_ EGP_7	NAD83	18	538 854	6 828 296	1 987 028 980	Péridotite	100	80,8	1147	44	36	2	RAGLAN	Ceinture de Cap Smith, dans la continuité d'indices Ni et Ni-Cu-EGP connus.	Haut MAG, continuité du haut mag correspondant à l'indice Raglan zone C1 et C2

CIBLE_ID	Système	Fuseau	х	Y	NumeroEch	Nom Roche (SIGEOM)	S (ppm)	Cu (ppm)	Ni (ppm)	Pt (ppb)	Pd (ppb)	Ir (ppb)	Type de profil	Commentaire	Géophysique
2014_07_ EGP_8	NAD83	18	538 836	6 828 371	1 987 028 980	Péridotite	100	23,6	1310,3	21	42	2	RAGLAN, À TENDANCE STILLWATER MOINS INTENSE	Ceinture de cap smith, dans la continuité d'indices Ni et Ni-Cu-EGP connus.	Haut MAG, continuité du haut mag correspondant à l'indice Raglan zone C1 et C2
2014_07_ EGP_9	NAD83	18	567 689	6 852 139	1 988 001 990	Péridotite	1500	69,4	1512,5	28	50	2,8	KOMATIITE CU-NI; TENDANCE RAGLAN	Situé dans le domaine nord de l'orogène de l'Ungava, dans une péridotite du groupe de Watts. Aucun indice connu dans ce secteur à proximité, cependant SIGÉOM indique 13 indices de Cu, et Pd, dans les roches mafiques et ultramafiques du groupe de Watts.	Haut gradient vertical du magnétisme continu le long de l'unité ultramafique. Système kilométrique
2014_07_ EGP_10	NAD83	18	567 704	6 852 228	1 988 001 990	Péridotite	1000	43,4	1132,4	40	23	2,5	RAGLAN	Situé dans le domaine nord de l'orogène de l'Ungava, dans une péridotite du groupe de Watts. Aucun indice connu dans ce secteur à proximité, cependant SIGÉOM indique 13 indices de Cu, et Pd, dans les roches mafiques et ultramafiques du groupe de Watts.	Haut gradient vertical du magnétisme continu le long de l'unité ultramafique. Système kilométrique

CIBLE_ID	Système	Fuseau	х	Y	NumeroEch	Nom Roche (SIGEOM)	S (ppm)	Cu (ppm)	Ni (ppm)	Pt (ppb)	Pd (ppb)	Ir (ppb)	Type de profil	Commentaire	Géophysique
2014_07_ EGP_11	NAD83	18	532 931	6 853 556	1 987 028 940	Gabbro	700	303,2	184,7	92	128	2	RATHUBUN	Situé dans le domaine nord de l'orogène de l'Ungava, dans une péridotite du groupe de Watts. Aucun indice connu dans ce secteur à proximité, cependant SIGÉOM indique 13 indices de Cu, et Pd, dans les roches mafiques et ultramafiques du groupe de Watts.	Creux magnétique, à proximité des bandes ultramafiques fortement magnétiques
2014_07_ EGP_12	NAD83	18	555 331	6 853 936	1 987 025 400	Ultramafique	1400	69,1	2053,2	138	274	6	STILLWATER	Situé dans le domaine nord de l'orogène de l'Ungava, dans une péridotite du groupe de Watts. Aucun indice connu dans ce secteur à proximité, cependant SIGÉOM indique 13 indices de Cu, et Pd, dans les roches mafiques et ultramafiques du groupe de Watts.	Forte anomalie de gradient vertical du magnétisme
2014_07_ EGP_13	NAD83	18	568 632	6 860 926	1 988 001 950	Péridotite	4300	144,4	1723,5	19	31	1,5	RAGLAN	Situé dans le domaine nord de l'orogène de l'Ungava, dans une péridotite du groupe de Watts. Aucun indice connu dans ce secteur à proximité, cependant SIGÉOM indique 13 indices de Cu, et Pd, dans les roches mafiques et ultramafiques du groupe de Watts.	Creux magnétique, à proximité de multiples hauts magnétiques

ANNEXE B – CIBLES POUR LE NI AU QUÉBEC À PARTIR DE LA CARTOGRAPHIE PRÉVISIONNELLE DES ROCHES ULTRAMAFIQUES RICHES EN NI

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_5	595 144	5 968 380	Cible à 1,5 km d'une anomalie en Ni dans la roche de 1,3 %; environnement de formations de fer reconnu comme hôte de la cible, cependant la relation ultramafiques et formation de fer est courante dans le secteur	priorité 1	180 583
2014- 07_UM- NI_62	597 666	5 968 290	Cible contenant une anomalie en Ni dans la roche de 1,3 %; environnement de formations de fer reconnu comme haute de la cible, cependant la relation ultramafique et formation de fer est courante dans le secteur	priorité 1	369 599
2014- 07_UM- NI_295	574 806	5 933 580	cible dans intrusion ultramafique connue et à proximité ; anomalie Ni sup à 0,15 % dans la roche à proximité	priorité 1	94 518
2014- 07_UM- NI_296	572 394	5 932 020	cible dans intrusion ultramafique connue et à proximité ; anomalie Ni sup à 0,15 % dans la roche à proximité	priorité 1	89 780
2014- 07_UM- NI_297	575 344	5 933 000	cible dans intrusion ultramafique connue et à proximité; anomalie Ni sup à 0,15 % dans la roche à proximité; au sein d'une crète magnétique est-ouest	priorité 1	139 208
2014- 07_UM- NI_298	576 687	5 933 460	cible dans intrusion ultramafique connue et à proximité; anomalie Ni sup à 0,15 % dans la roche à proximité; au sein d'une crète magnétique est-ouest	priorité 1	5559
2014- 07_UM- NI_299	573 315	5 931 990	cible dans intrusion ultramafique connue et à proximité; anomalie Ni sup à 0,15 % dans la roche à proximité; au sein d'une crète magnétique est-ouest	priorité 1	4739
2014- 07_UM- NI_300	576 148	5 933 120	cible dans intrusion ultramafique connue et à proximité; anomalie Ni sup à 0,15 % dans la roche à proximité; au sein d'une crète magnétique est-ouest	priorité 1	8579
2014- 07_UM- NI_301	574 073	5 932 150	cible dans intrusion ultramafique connue et à proximité; anomalie Ni sup à 0,15 % dans la roche à proximité; au sein d'une crète magnétique est-ouest	priorité 1	7696
2014- 07_UM- NI_302	697 103	5 944 960	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	619 255
2014- 07_UM- NI_303	700 814	5 947 840	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	975
2014- 07_UM- NI_304	696 646	5 946 430	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	185 169
2014- 07_UM- NI_305	700 631	5 944 580	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	1702
2014- 07_UM- NI_306	700 275	5 944 810	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	132 259

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_307	698 039	5 944 330	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	145 336
2014- 07_UM- NI_308	697 822	5 943 570	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	7152
2014- 07_UM- NI_309	697 670	5 951 300	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	11 693
2014- 07_UM- NI_310	697 126	5 947 550	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	9139
2014- 07_UM- NI_311	697 084	5 947 720	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	2699
2014- 07_UM- NI_312	696 854	5 947 300	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	86 017
2014- 07_UM- NI_313	696 853	5 947 900	cible dans intrusion ultramafique connue et à proximité ; plusieurs anomalies sup à 0,15 % Ni dans la roche à proximité	priorité 1	15 565
2014- 07_UM- NI_318	692 801	5 795 310	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	715 177
2014- 07_UM- NI_319	697 048	5 794 340	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	85 896
2014- 07_UM- NI_320	690 171	5 796 940	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	46 589
2014- 07_UM- NI_321	696 478	5 794 450	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	57 399
2014- 07_UM- NI_322	690 418	5 797 240	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	67 617
2014- 07_UM- NI_323	696 011	5 794 520	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	684
2014- 07_UM- NI_324	690 421	5 795 620	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	231
2014- 07_UM- NI_325	695 236	5 794 610	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	11 490
2014- 07_UM- NI_326	694 984	5 795 080	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	2060

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_327	691 386	5 796 110	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	5994
2014- 07_UM- NI_328	690 884	5 796 200	cible dans intrusion ultramafique connue ; deux anomalies en Ni dans la roche, sup à 0,1 % ; haut mag	priorité 1	234 212
2014- 07_UM- NI_330	661 122	5 796 000	cible dans intrusion ultramafique ; deux anomalies en Ni dans la roche sup à 0,2 %	priorité 1	78 184
2014- 07_UM- NI_331	662 406	5 796 380	cible dans intrusion ultramafique ; deux anomalies en Ni dans la roche sup à 0,2 %	priorité 1	2298
2014- 07_UM- NI_332	655 352	5 793 580	cible dans intrusion ultramafique ; nombreuses anomalies en Ni dans la roche sup à 0,15 % et aussi en Pd sup à 50 ppb	priorité 1	131 302
2014- 07_UM- NI_333	655 028	5 792 890	cible dans intrusion ultramafique ; nombreuses anomalies en Ni dans la roche sup à 0,15 % et aussi en Pd sup à 50 ppb	priorité 1	55 882
2014- 07_UM- NI_555	688 641	5 991 510	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	1 072 340
2014- 07_UM- NI_556	694 257	5 990 970	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	53 081
2014- 07_UM- NI_557	680 638	5 990 720	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	40 488
2014- 07_UM- NI_558	693 965	5 991 380	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	15 519
2014- 07_UM- NI_559	693 570	5 989 350	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	68 897
2014- 07_UM- NI_560	693 245	5 990 630	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	1854
2014- 07_UM- NI_561	680 789	5 991 220	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	28 878
2014- 07_UM- NI_562	693 585	5 990 210	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	330 974
2014- 07_UM- NI_563	681 235	5 990 770	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	226 462
2014- 07_UM- NI_564	693 055	5 989 540	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	77 943

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_565	681 216	5 990 130	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	87 205
2014- 07_UM- NI_566	692 631	5 990 020	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	61 136
2014- 07_UM- NI_567	692 520	5 989 080	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	65 373
2014- 07_UM- NI_568	692 490	5 989 720	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	24 303
2014- 07_UM- NI_569	692 296	5 989 490	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	47 594
2014- 07_UM- NI_570	681 493	5 993 190	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	121 432
2014- 07_UM- NI_571	691 756	5 990 240	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	234 273
2014- 07_UM- NI_572	691 160	5 990 650	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	8957
2014- 07_UM- NI_573	691 358	5 988 060	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	232 072
2014- 07_UM- NI_574	690 892	5 990 780	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	474
2014- 07_UM- NI_575	690 781	5 989 530	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	135
2014- 07_UM- NI_576	691 343	5 989 320	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	570 044
2014- 07_UM- NI_577	690 645	5 990 290	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	19 644
2014- 07_UM- NI_578	690 500	5 988 320	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	2866
2014- 07_UM- NI_579	681 894	5 993 690	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	145 526
2014- 07_UM- NI_580	690 188	5 989 350	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	3577

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_581	681 842	5 992 200	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	51 581
2014- 07_UM- NI_582	690 519	5 988 870	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	181 267
2014- 07_UM- NI_583	690 205	5 989 950	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	38 326
2014- 07_UM- NI_584	690 048	5 988 690	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	31 768
2014- 07_UM- NI_585	682 201	5 989 950	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	261 297
2014- 07_UM- NI_586	690 155	5 990 390	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	163 760
2014- 07_UM- NI_587	689 682	5 988 960	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	19 456
2014- 07_UM- NI_588	689 419	5 989 240	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	12 307
2014- 07_UM- NI_589	688 986	5 989 180	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	292 698
2014- 07_UM- NI_590	689 073	5 991 910	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	43 764
2014- 07_UM- NI_591	682 702	5 989 110	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	479 642
2014- 07_UM- NI_592	688 862	5 990 330	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	19 708
2014- 07_UM- NI_593	688 762	5 992 550	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	10 228
2014- 07_UM- NI_594	689 403	5 989 830	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	343 350
2014- 07_UM- NI_595	688 425	5 989 870	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	16 021
2014- 07_UM- NI_596	688 504	5 990 660	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	76 785

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_597	688 125	5 988 030	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	68
2014- 07_UM- NI_598	688 115	5 990 250	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	53 060
2014- 07_UM- NI_599	687 822	5 990 640	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	75 829
2014- 07_UM- NI_600	688 111	5 993 320	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	143 990
2014- 07_UM- NI_601	682 084	5 993 160	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	10 358
2014- 07_UM- NI_602	687 780	5 988 030	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	65 085
2014- 07_UM- NI_603	687 716	5 991 070	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	84 856
2014- 07_UM- NI_604	682 361	5 992 710	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	15 218
2014- 07_UM- NI_605	687 067	5 991 740	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	184 690
2014- 07_UM- NI_606	682 387	5 992 080	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	9973
2014- 07_UM- NI_607	686 877	5 990 900	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	36 801
2014- 07_UM- NI_608	685 722	5 988 570	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	494 972
2014- 07_UM- NI_609	686 514	5 991 220	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	61 390
2014- 07_UM- NI_610	685 990	5 992 210	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	365 623
2014- 07_UM- NI_611	682 702	5 991 430	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	1361
2014- 07_UM- NI_612	682 955	5 991 350	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	32 960

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_613	686 421	5 992 980	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	262 147
2014- 07_UM- NI_614	686 071	5 990 120	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	55 785
2014- 07_UM- NI_615	683 122	5 992 020	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	19 134
2014- 07_UM- NI_616	683 522	5 990 970	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	145 913
2014- 07_UM- NI_617	683 486	5 989 750	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	96 453
2014- 07_UM- NI_618	685 795	5 990 640	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	45 418
2014- 07_UM- NI_619	683 893	5 989 410	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	204 937
2014- 07_UM- NI_620	683 713	5 990 420	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	67 905
2014- 07_UM- NI_621	683 842	5 988 630	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	50 591
2014- 07_UM- NI_622	684 945	5 989 950	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	628 492
2014- 07_UM- NI_623	684 164	5 992 280	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	14 904
2014- 07_UM- NI_624	684 925	5 991 740	cible dans un secteur d'intrusions ultramafiques et de formation de fer au contact ; multiples anomalies en Ni dans la roche sup à 0,2 % ; tendance magnétique NO-SE	priorité 1	676 521
2014- 07_UM- NI_675	698 209	5 931 250	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	916 869
2014- 07_UM- NI_676	700 037	5 931 390	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	4471
2014- 07_UM- NI_677	696 107	5 930 830	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	148 980
2014- 07_UM- NI_678	698 536	5 931 340	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	56 678

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_679	697 394	5 934 310	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	50 899
2014- 07_UM- NI_680	696 995	5 930 440	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	14 012
2014- 07_UM- NI_681	696 875	5 931 260	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	482 912
2014- 07_UM- NI_682	696 889	5 932 440	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	1726
2014- 07_UM- NI_683	696 973	5 933 970	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	58 902
2014- 07_UM- NI_684	696 721	5 933 620	cible le long de formation de fer connue ; cependant il y a 3 anomalies en Ni sup à 0,1 % dans la roche ; le potentiel pour des ultramafites non reconnues est présent	priorité 1	14 662
2014- 07_UM- NI_690	580 257	5 951 030	forte anomalie en Ni sup à 0,25 % dans la roche à moins de 1 km. Cible se trouve dans des unités volcaniques mafiques	priorité 1	140 263
2014- 07_UM- NI_691	580 015	5 950 370	forte anomalie en Ni sup à 0,25 % dans la roche à moins de 1 km. Cible se trouve dans des unités volcaniques mafiques	priorité 1	1642
2014- 07_UM- NI_6	688 828	5 930 410	cible à moins de 1 km d'intrusion ultramafique connue	priorité 2	18 211
2014- 07_UM- NI_54	634 986	6 016 320	cible à proximité de roches ultramafiques connues	priorité 2	175 461
2014- 07_UM- NI_55	685 485	5 940 300	cible à proximité de roches ultramafiques connues	priorité 2	54 194
2014- 07_UM- NI_56	684 921	5 940 280	cible à proximité de roches ultramafiques connues	priorité 2	3277
2014- 07_UM- NI_57	635 790	6 016 420	cible à proximité de roches ultramafiques connues	priorité 2	37 098
2014- 07_UM- NI_63	597 840	5 966 360	cible contenue dans des formations de fer ; relation spatiale formation de fer et ultramafique courante pour le secteur; signature magnétique de la cible plus faible que celle dles formations de fer ; anomalie en Ni dans la roche de 1,3 % à 2 km au nord	priorité 2	83 471
2014- 07_UM- NI_64	601 954	5 965 610	cible contenue dans des formations de fer ; relation spatiale formation de fer et ultramafique courante pour le secteur;signature magnétique de la cible plus faible que celle dles formations de fer ; anomalie en Ni dans la roche de 1,3 % à 2 km au nord	priorité 2	17 443

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_65	596 265	5 967 820	cible contenue dans des formations de fer ; relation spatiale formation de fer et ultramafique courante pour le secteur;signature magnétique de la cible plus faible que celle dles formations de fer ; anomalie en Ni dans la roche de 1,3 % à 2 km au nord	priorité 2	1701
2014- 07_UM- NI_66	600 069	5 966 230	cible contenue dans des formations de fer ; relation spatiale formation de fer et ultramafique courante pour le secteur;signature magnétique de la cible plus faible que celle dles formations de fer ; anomalie en Ni dans la roche de 1,3 % à 2 km au nord	priorité 2	30 450
2014- 07_UM- NI_67	599 099	5 966 300	cible contenue dans des formations de fer ; relation spatiale formation de fer et ultramafique courante pour le secteur;signature magnétique de la cible plus faible que celle dles formations de fer ; anomalie en Ni dans la roche de 1,3 % à 2 km au nord	priorité 2	46 832
2014- 07_UM- NI_87	654 420	5 790 320	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	134 498
2014- 07_UM- NI_88	671 646	5 789 810	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	2143
2014- 07_UM- NI_89	654 096	5 789 840	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	27 468
2014- 07_UM- NI_90	669 543	5 791 820	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	3760
2014- 07_UM- NI_91	668 293	5 792 220	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	5688
2014- 07_UM- NI_92	668 363	5 791 810	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	64 802
2014- 07_UM- NI_93	667 866	5 789 540	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	15 922
2014- 07_UM- NI_94	658 384	5 789 260	cible dans des gneiss d'après Sigeom, à proximité de la ceinture d'Eastmain qui contient de nombreuses intrusions ultramafiques ; signature magnétique similaire aux intrusions ultramafiques du secteur	priorité 2	31 502
2014- 07_UM- NI_192	551 718	5 818 400	cible dans des paragneiss d'après Sigéom ; le long d'une structure magnétique est-ouest contenant une anomalie en Ni dans la roche proche de 0,1 % - à 3 km à l'est	priorité 2	24 079
2014- 07_UM- NI_193	551 922	5 818 500	cible dans des paragneiss d'après Sigéom ; le long d'une structure magnétique est-ouest contenant une anomalie en Ni dans la roche proche de 0,1 % - à 3 km à l'est	priorité 2	5083

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_208	657 824	6 016 890	cible dans des roches ultramafiques connues	priorité 2	107 537
2014- 07_UM- NI_209	651 883	6 010 410	cible dans des roches ultramafiques connues	priorité 2	50 374
2014- 07_UM- NI_210	653 168	6 016 570	cible dans des roches ultramafiques connues	priorité 2	547
2014- 07_UM- NI_211	687 375	5 944 420	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	173 303
2014- 07_UM- NI_212	689 391	5 945 050	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	67 695
2014- 07_UM- NI_213	681 119	5 941 260	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	101 880
2014- 07_UM- NI_214	688 876	5 945 630	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	40 588
2014- 07_UM- NI_215	688 827	5 945 150	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	35 770
2014- 07_UM- NI_216	688 573	5 945 330	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	905
2014- 07_UM- NI_217	681 234	5 940 710	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	20 733
2014- 07_UM- NI_218	687 364	5 944 960	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	10 168
2014- 07_UM- NI_219	687 028	5 944 070	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	12 773
2014- 07_UM- NI_220	686 367	5 944 090	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	135 035
2014- 07_UM- NI_221	686 370	5 943 560	cible dans des roches ultramafiques connues ; plusieurs indices de Ni dans ces unités	priorité 2	6888
2014- 07_UM- NI_244	564 224	5 929 250	cible dans formation de fer, cependant il existe une anomalie sup à 0,1 % Ni dans la roche ; des intrusions ultramafiques reconnues à moins de 2 km au sud	priorité 2	279 129
2014- 07_UM- NI_289	688 516	5 954 740	cible dans intrusion ultramafique connue	priorité 2	337 680

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_290	694 706	5 955 200	cible dans intrusion ultramafique connue	priorité 2	93 764
2014- 07_UM- NI_291	694 559	5 954 310	cible dans intrusion ultramafique connue	priorité 2	60 989
2014- 07_UM- NI_292	694 039	5 955 010	cible dans intrusion ultramafique connue	priorité 2	7491
2014- 07_UM- NI_293	691 301	5 953 960	cible dans intrusion ultramafique connue	priorité 2	218 584
2014- 07_UM- NI_294	690 359	5 954 300	cible dans intrusion ultramafique connue	priorité 2	9469
2014- 07_UM- NI_707	628 136	5 944 120	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	3757
2014- 07_UM- NI_708	628 179	5 943 320	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	52 613
2014- 07_UM- NI_709	625 837	5 941 940	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	23 447
2014- 07_UM- NI_710	626 134	5 942 410	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	49 114
2014- 07_UM- NI_711	626 591	5 942 430	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	6492
2014- 07_UM- NI_712	626 656	5 943 420	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	61 288
2014- 07_UM- NI_713	626 113	5 943 180	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	270
2014- 07_UM- NI_714	580 444	5 969 320	cible dans un secteur d'intrusions ultramafiques et de formations des fers en contact;600 ppm Ni dans la roche à proximité	priorité 2	590 540
2014- 07_UM- NI_715	579 171	5 969 440	cible dans un secteur d'intrusions ultramafiques et de formations des fers en contact;600 ppm Ni dans la roche à proximité	priorité 2	54 744
2014- 07_UM- NI_716	579 742	5 969 990	cible dans un secteur d'intrusions ultramafiques et de formations des fers en contact;600 ppm Ni dans la roche à proximité	priorité 2	6957
2014- 07_UM- NI_717	640 431	6 001 020	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	323 063

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_718	640 571	6 000 130	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	241 440
2014- 07_UM- NI_314	606 968	5 875 870	cible dans intrusion ultramafique connue ; crète magnétique est- ouest	priorité 2	785 646
2014- 07_UM- NI_315	610 889	5 875 040	cible dans intrusion ultramafique connue ; crète magnétique est- ouest	priorité 2	8084
2014- 07_UM- NI_316	605 011	5 876 660	cible dans intrusion ultramafique connue ; crète magnétique est- ouest	priorité 2	63 836
2014- 07_UM- NI_317	611 436	5 875 980	cible dans intrusion ultramafique connue ; crète magnétique est- ouest	priorité 2	336 920
2014- 07_UM- NI_329	672 245	5 994 450	cible dans intrusion ultramafique connue ; flanc nord d'un pli kilométrique	priorité 2	131 378
2014- 07_UM- NI_369	695 943	5 795 570	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	16 658
2014- 07_UM- NI_370	699 941	5 794 600	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	9188
2014- 07_UM- NI_371	691 759	5 793 510	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	1851
2014- 07_UM- NI_372	698 447	5 794 820	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	3582
2014- 07_UM- NI_373	692 018	5 793 370	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	11 333
2014- 07_UM- NI_374	697 921	5 795 620	cible dans la ceinture d'Eastmain, à proximité d'intrusions ultramafiques connues ; plusieurs anomalies en Ni à proximité	priorité 2	309
2014- 07_UM- NI_375	675 528	5 800 380	cible dans la ceinture d'Eastmain ; signature magnétique similaire aux intrusions ultramafiques connues du secteur	priorité 2	43 770
2014- 07_UM- NI_376	671 584	5 798 600	cible dans la ceinture d'Eastmain ; signature magnétique similaire aux intrusions ultramafiques connues du secteur	priorité 2	24 092
2014- 07_UM- NI_377	633 258	5 964 800	cible dans la continuité magnétique d'une intrusion ultramafique	priorité 2	20 592
2014- 07_UM- NI_378	683 225	5 808 130	cible dans les roches mafiques de la ceinture d'Eastmain ; haut MAG et anomalie en Ni au sud; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	68

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_379	700 524	5 814 550	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	182 566
2014- 07_UM- NI_380	694 086	5 816 510	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	10 452
2014- 07_UM- NI_381	699 186	5 814 170	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	1449
2014- 07_UM- NI_382	694 494	5 812 410	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	5690
2014- 07_UM- NI_383	698 953	5 814 070	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	3324
2014- 07_UM- NI_384	694 901	5 812 210	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	120 141
2014- 07_UM- NI_385	698 675	5 813 050	cible dans les roches mafiques de la ceinture d'Eastmain ; potentiel d'ultramafites minéralisées en Ni démontré dans cette ceinture	priorité 2	36 860
2014- 07_UM- NI_517	672 465	5 994 400	cible dans péridotite connue	priorité 2	161 865
2014- 07_UM- NI_518	629 198	6 011 220	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	228 226
2014- 07_UM- NI_519	631 587	6 013 580	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	200
2014- 07_UM- NI_520	627 875	6 010 940	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	5742
2014- 07_UM- NI_521	628 858	6 011 810	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	106 915
2014- 07_UM- NI_522	631 575	6 014 410	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	10 134
2014- 07_UM- NI_523	631 342	6 014 150	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	24 099
2014- 07_UM- NI_524	630 877	6 013 280	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	4316
2014- 07_UM- NI_525	628 617	6 010 640	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	31 736

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_526	630 952	6 013 710	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	72 283
2014- 07_UM- NI_527	630 624	6 013 430	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	14 568
2014- 07_UM- NI_528	630 366	6 013 190	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	19 539
2014- 07_UM- NI_529	630 299	6 012 310	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	92 591
2014- 07_UM- NI_530	630 127	6 012 950	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	29 402
2014- 07_UM- NI_531	629 836	6 012 700	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	3997
2014- 07_UM- NI_532	629 869	6 011 820	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	22 262
2014- 07_UM- NI_533	629 351	6 012 300	cible dans roche ultramafique et à proximité ; tendance magnétique NE dans le flanc d'un pli	priorité 2	4206
2014- 07_UM- NI_625	566 195	5 972 420	cible dans une anomalie magnétique circulaire alors que la lithologie haute est reconnue comme arénite ; cette anomalie circulaire n'est pas distinguée dans le géologie du Sigéom	priorité 2	349 275
2014- 07_UM- NI_635	695 862	5 982 350	cible dans une intrusion ultramafique connue ; signature magnétique similaire aux cibles plus au nord ayant un fort potentiel	priorité 2	418 133
2014- 07_UM- NI_636	697 886	5 980 120	cible dans une intrusion ultramafique connue ; signature magnétique similaire aux cibles plus au nord ayant un fort potentiel	priorité 2	320 119
2014- 07_UM- NI_637	695 341	5 983 240	cible dans une intrusion ultramafique connue ; signature magnétique similaire aux cibles plus au nord ayant un fort potentiel	priorité 2	17 618
2014- 07_UM- NI_638	696 862	5 981 210	cible dans une intrusion ultramafique connue ; signature magnétique similaire aux cibles plus au nord ayant un fort potentiel	priorité 2	312 434
2014- 07_UM- NI_685	595 059	5 963 320	cible reconnue dans des formations de fer ; cependant les ultramafiques et les formations de fer sont régulièrement en contact dans ce secteur ; signature mag de la cible plus faible que les formations de fer	priorité 2	3060
2014- 07_UM- NI_692	627 494	5 942 960	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	287 951
2014- 07_UM- NI_693	632 818	5 942 820	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	94 228

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_694	625 034	5 943 630	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	42 373
2014- 07_UM- NI_695	632 369	5 941 900	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	43 618
2014- 07_UM- NI_696	632 331	5 943 180	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	36 459
2014- 07_UM- NI_697	630 717	5 943 490	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	79 238
2014- 07_UM- NI_698	630 805	5 943 000	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	227 956
2014- 07_UM- NI_699	625 033	5 942 900	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	21 559
2014- 07_UM- NI_700	625 400	5 942 480	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	98 044
2014- 07_UM- NI_701	629 952	5 944 130	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	24 103
2014- 07_UM- NI_702	625 724	5 943 040	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	61 278
2014- 07_UM- NI_703	629 874	5 943 650	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	228 392
2014- 07_UM- NI_704	629 051	5 944 150	cible dans intrusion ultramafique et à proximité;tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	11 832
2014- 07_UM- NI_705	629 147	5 943 230	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O ; présence de formations de fer à l'est	priorité 2	97 340
2014- 07_UM- NI_706	628 645	5 943 660	cible dans intrusion ultramafique et à proximité; tendance magnétique E-O; présence de formations de fer à l'est	priorité 2	163 039
2014- 07_UM- NI_719	637 827	6 000 840	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	33 607
2014- 07_UM- NI_720	639 275	6 001 160	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	108 219
2014- 07_UM- NI_721	639 292	5 999 720	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	149 585

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_722	638 890	6 001 320	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	28 663
2014- 07_UM- NI_723	637 910	6 000 040	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	18 470
2014- 07_UM- NI_724	638 265	5 999 870	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	19 182
2014- 07_UM- NI_725	638 121	6 000 990	cible dans des roches ultramafiques connues ; structure magnétique circulaire de type intrusion	priorité 2	19 877
2014- 07_UM- NI_1	689 931	5 952 500	anomalie magnétique circulaire ; à proximité d'intrusions ultramafiques connues	priorité 3	170 862
2014- 07_UM- NI_2	690 352	5 953 440	anomalie magnétique circulaire ; à proximité d'intrusions ultramafiques connues	priorité 3	153 180
2014- 07_UM- NI_3	689 411	5 950 990	anomalie magnétique circulaire ; à proximité d'intrusions ultramafiques connues	priorité 3	168 894
2014- 07_UM- NI_4	689 782	5 950 450	anomalie magnétique circulaire ; à proximité d'intrusions ultramafiques connues	priorité 3	104 219
2014- 07_UM- NI_7	609 146	5 801 370	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	472 813
2014- 07_UM- NI_8	610 868	5 799 450	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	6974
2014- 07_UM- NI_9	601 886	5 806 560	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	27 252
2014- 07_UM- NI_10	610 300	5 800 270	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	291 696
2014- 07_UM- NI_11	602 069	5 805 900	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	24 821
2014- 07_UM- NI_12	602 270	5 805 740	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	6113
2014- 07_UM- NI_13	607 238	5 807 610	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	9519
2014- 07_UM- NI_14	602 822	5 803 780	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	122 972

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_15	606 960	5 806 400	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	17 416
2014- 07_UM- NI_16	602 840	5 807 830	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	76 914
2014- 07_UM- NI_17	607 013	5 801 410	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	45 015
2014- 07_UM- NI_18	606 727	5 806 120	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	368
2014- 07_UM- NI_19	606 544	5 802 670	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	47 347
2014- 07_UM- NI_20	606 295	5 802 940	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	34 036
2014- 07_UM- NI_21	606 272	5 801 910	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	17 404
2014- 07_UM- NI_22	606 068	5 802 570	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	9776
2014- 07_UM- NI_23	606 078	5 801 980	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	10 469
2014- 07_UM- NI_24	606 043	5 803 300	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	29 807
2014- 07_UM- NI_25	605 563	5 802 260	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	25 452
2014- 07_UM- NI_26	605 523	5 801 950	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	73 571
2014- 07_UM- NI_27	605 583	5 804 770	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	211 446
2014- 07_UM- NI_28	605 152	5 801 960	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	4873
2014- 07_UM- NI_29	604 041	5 807 070	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	55 733
2014- 07_UM- NI_30	603 032	5 807 550	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	4442

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_31	603 553	5 804 220	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	26 081
2014- 07_UM- NI_32	603 403	5 807 360	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	63 779
2014- 07_UM- NI_33	603 066	5 804 230	cible à proximité d'un point d'inflexion des linéaments magnétiques ; roche haute monzonite à paragneiss d'après Sigéom	priorité 3	6273
2014- 07_UM- NI_34	687 504	5 953 540	cible à proximité de formation de fer et d'intrusion ultramafique	priorité 3	253 263
2014- 07_UM- NI_35	611 538	5 964 570	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	421 007
2014- 07_UM- NI_36	615 288	5 959 650	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	11 985
2014- 07_UM- NI_37	609 954	5 964 210	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	44 694
2014- 07_UM- NI_38	614 942	5 959 910	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	69 808
2014- 07_UM- NI_39	609 871	5 963 670	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	232
2014- 07_UM- NI_40	614 226	5 960 600	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	15 088
2014- 07_UM- NI_41	610 812	5 963 440	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	269 411
2014- 07_UM- NI_42	612 160	5 963 230	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	65 246
2014- 07_UM- NI_43	611 464	5 963 810	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	59 032
2014- 07_UM- NI_44	610 833	5 962 870	cible à proximité de formation de fer ; souvent en contact avec les ultramafiques dans le secteur ; la signature mag de la cible est plus faible que celle des formations de fer	priorité 3	21 727
2014- 07_UM- NI_45	691 537	5 950 660	cible à proximité de formations de fer et aussi d'intrusions ultramafiques connues	priorité 3	52 533
2014- 07_UM- NI_46	691 785	5 951 080	cible à proximité de formations de fer et aussi d'intrusions ultramafiques connues	priorité 3	15 914

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_47	613 505	5 990 180	cible à proximité de roche mafique à ultramafiques connues	priorité 3	70 247
2014- 07_UM- NI_48	613 474	5 991 490	cible à proximité de roche mafique à ultramafiques connues	priorité 3	423
2014- 07_UM- NI_49	612 950	5 990 820	cible à proximité de roche mafique à ultramafiques connues	priorité 3	13 834
2014- 07_UM- NI_50	612 972	5 991 270	cible à proximité de roche mafique à ultramafiques connues	priorité 3	23 490
2014- 07_UM- NI_51	612 988	5 990 080	cible à proximité de roche mafique à ultramafiques connues	priorité 3	26 071
2014- 07_UM- NI_52	613 516	5 990 520	cible à proximité de roche mafique à ultramafiques connues	priorité 3	16 134
2014- 07_UM- NI_53	612 973	5 990 430	cible à proximité de roche mafique à ultramafiques connues	priorité 3	1255
2014- 07_UM- NI_58	615 575	6 010 730	cible à proximité de roches ultramafiques connues ; cependant il n'y a aucune concordance entre le MAG et la géologie de Sigéom pour ce secteur	priorité 3	68
2014- 07_UM- NI_59	566 240	5 988 990	cible avec de possiblement des formations de fer	priorité 3	98 502
2014- 07_UM- NI_60	566 758	5 987 980	cible avec de possiblement des formations de fer	priorité 3	3292
2014- 07_UM- NI_61	566 513	5 987 600	cible avec de possiblement des formations de fer	priorité 3	4931
2014- 07_UM- NI_68	621 946	5 945 690	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	67 605
2014- 07_UM- NI_69	623 197	5 944 770	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	16 591
2014- 07_UM- NI_70	620 323	5 944 840	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	21 792
2014- 07_UM- NI_71	622 922	5 945 710	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	13 382
2014- 07_UM- NI_72	622 666	5 945 440	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	15 327

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_73	622 521	5 945 970	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	35 160
2014- 07_UM- NI_74	621 458	5 944 450	cible contenue dans des roches mafiques et sédimentaires ; unités ultramafiques connues à 5 km à l'est	priorité 3	6509
2014- 07_UM- NI_75	625 597	5 762 250	cible dans amphibolite d'après Sigéom	priorité 3	96 378
2014- 07_UM- NI_76	625 994	5 761 910	cible dans amphibolite d'après Sigéom	priorité 3	30 724
2014- 07_UM- NI_77	577 718	5 964 360	cible dans des amphibolites d'après Sigéom	priorité 3	725 993
2014- 07_UM- NI_78	582 141	5 961 580	cible dans des amphibolites d'après Sigéom	priorité 3	46 225
2014- 07_UM- NI_79	580 877	5 962 650	cible dans des amphibolites d'après Sigéom	priorité 3	115 746
2014- 07_UM- NI_80	580 560	5 963 350	cible dans des amphibolites d'après Sigéom	priorité 3	136 647
2014- 07_UM- NI_81	579 161	5 964 100	cible dans des amphibolites d'après Sigéom	priorité 3	42 910
2014- 07_UM- NI_82	692 743	5 940 160	cible dans des conglomérats d'après Sigéom	priorité 3	62 305
2014- 07_UM- NI_83	694 795	5 940 150	cible dans des conglomérats d'après Sigéom	priorité 3	3866
2014- 07_UM- NI_84	692 520	5 940 430	cible dans des conglomérats d'après Sigéom	priorité 3	1752
2014- 07_UM- NI_85	632 383	5 762 590	cible dans des gneiss à intrusions felsiques d'après Sigéom ; à proximité de lambeaux d'amphibolite à l'est	priorité 3	45 092
2014- 07_UM- NI_86	632 328	5 763 000	cible dans des gneiss à intrusions felsiques d'après Sigéom ; à proximité de lambeaux d'amphibolite à l'est	priorité 3	3081
2014- 07_UM- NI_95	680 336	5 868 910	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	78 286
2014- 07_UM- NI_96	683 329	5 874 870	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	11 652

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_97	675 080	5 872 620	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	22 710
2014- 07_UM- NI_98	675 817	5 872 330	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	200
2014- 07_UM- NI_99	678 935	5 875 130	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	65 399
2014- 07_UM- NI_100	675 996	5 872 250	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	5103
2014- 07_UM- NI_101	678 857	5 868 790	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	63 623
2014- 07_UM- NI_102	676 210	5 873 160	cible dans des gneiss et granodiorite, très peu d'information géologique dans le secteur	priorité 3	24 286
2014- 07_UM- NI_103	673 563	5 837 750	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	202 437
2014- 07_UM- NI_104	675 978	5 838 860	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	1597
2014- 07_UM- NI_105	670 425	5 838 280	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	38 159
2014- 07_UM- NI_106	675 493	5 838 400	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	9225
2014- 07_UM- NI_107	671 001	5 837 900	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	70 628
2014- 07_UM- NI_108	675 440	5 840 630	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	22 539
2014- 07_UM- NI_109	670 980	5 838 800	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	28 938
2014- 07_UM- NI_110	673 399	5 839 800	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	10 670
2014- 07_UM- NI_111	671 505	5 837 830	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	18 120
2014- 07_UM- NI_112	671 760	5 839 090	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	2158

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_113	672 969	5 839 730	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	343
2014- 07_UM- NI_114	673 392	5 841 010	cible dans des granites et granodiorites d'après Sigéom ; forte signature magnétique plissée	priorité 3	138 149
2014- 07_UM- NI_115	607 565	5 820 020	cible dans des granodiorites d'après Sigéom ; cible au sein d'un domaine magnétique à structuration nord-sud (possiblement plus ancienne que la structuration est-ouest ; Faure, 2010)	priorité 3	454 705
2014- 07_UM- NI_116	624 809	5 821 390	cible dans des granodiorites d'après Sigéom ; cible au sein d'un domaine magnétique à structuration nord-sud (possiblement plus ancienne que la structuration est-ouest ; Faure, 2010)	priorité 3	6127
2014- 07_UM- NI_117	602 325	5 813 280	cible dans des granodiorites d'après Sigéom ; cible au sein d'un domaine magnétique à structuration nord-sud (possiblement plus ancienne que la structuration est-ouest ; Faure, 2010)	priorité 3	68
2014- 07_UM- NI_118	624 679	5 816 680	cible dans des granodiorites d'après Sigéom ; cible au sein d'un domaine magnétique à structuration nord-sud (possiblement plus ancienne que la structuration est-ouest ; Faure, 2010)	priorité 3	3289
2014- 07_UM- NI_119	583 115	5 955 540	cible dans des intrusions felsiques ; faible anomalie en Ni dans la roche à moins de 1,5 km	priorité 3	81 614
2014- 07_UM- NI_120	584 055	5 956 790	cible dans des intrusions felsiques ; faible anomalie en Ni dans la roche à moins de 2 km	priorité 3	45 082
2014- 07_UM- NI_121	533 257	5 855 140	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	146 469
2014- 07_UM- NI_122	537 561	5 854 630	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	113 433
2014- 07_UM- NI_123	532 287	5 856 670	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	33 217
2014- 07_UM- NI_124	536 147	5 854 360	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	2941
2014- 07_UM- NI_125	536 168	5 854 880	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	75 713
2014- 07_UM- NI_126	536 245	5 856 050	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	124 951
2014- 07_UM- NI_127	535 045	5 854 200	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	13 939
2014- 07_UM- NI_128	532 672	5 856 470	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	19 648

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_129	534 654	5 854 160	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	8203
2014- 07_UM- NI_130	534 786	5 855 910	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	69 721
2014- 07_UM- NI_131	533 473	5 855 980	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	270
2014- 07_UM- NI_132	533 766	5 854 110	cible dans des intrusions porphyriques à feldspaths d'après Sigéom ; grain magnétique est-ouest	priorité 3	34 801
2014- 07_UM- NI_133	563 335	5 834 280	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	50 353
2014- 07_UM- NI_134	564 969	5 833 510	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	3558
2014- 07_UM- NI_135	554 973	5 842 280	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	1133
2014- 07_UM- NI_136	556 016	5 832 500	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	14 267
2014- 07_UM- NI_137	562 919	5 835 010	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	31 031
2014- 07_UM- NI_138	561 476	5 833 390	cible dans des intrusions porphyriques d'après Sigéom	priorité 3	9862
2014- 07_UM- NI_139	616 130	5 984 010	cible dans des métasédiments d'après Sigéom	priorité 3	133 976
2014- 07_UM- NI_140	618 295	5 984 520	cible dans des métasédiments d'après Sigéom	priorité 3	18 597
2014- 07_UM- NI_141	569 028	5 861 370	cible dans des paragneiss	priorité 3	149 959
2014- 07_UM- NI_142	569 591	5 861 870	cible dans des paragneiss	priorité 3	40 279
2014- 07_UM- NI_143	568 582	5 861 360	cible dans des paragneiss	priorité 3	9594
2014- 07_UM- NI_144	626 948	5 875 830	cible dans des paragneiss à intrusions felsiques d'après Sigéom	priorité 3	54 742

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_145	643 444	5 872 110	cible dans des paragneiss à intrusions felsiques d'après Sigéom	priorité 3	37 198
2014- 07_UM- NI_146	632 663	5 877 720	cible dans des paragneiss à intrusions felsiques d'après Sigéom	priorité 3	21 996
2014- 07_UM- NI_147	630 273	5 866 380	cible dans des paragneiss à intrusions felsiques d'après Sigéom	priorité 3	8732
2014- 07_UM- NI_148	628 733	5 873 020	cible dans des paragneiss à intrusions felsiques d'après Sigéom	priorité 3	302
2014- 07_UM- NI_149	582 617	5 778 940	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	134 716
2014- 07_UM- NI_150	584 026	5 778 760	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	11 142
2014- 07_UM- NI_151	581 758	5 779 250	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	4626.
2014- 07_UM- NI_152	583 488	5 779 070	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	3451.
2014- 07_UM- NI_153	581 769	5 778 930	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	519
2014- 07_UM- NI_154	583 276	5 778 920	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	39 642
2014- 07_UM- NI_155	583 018	5 778 310	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	1447.
2014- 07_UM- NI_156	582 759	5 778 330	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	5493.
2014- 07_UM- NI_157	582 561	5 778 360	cible dans des paragneiss d'après Sigéom ; la cible se trouve au sein d'un ensemble de cibles	priorité 3	16 699
2014- 07_UM- NI_158	568 023	5 800 160	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	110 778
2014- 07_UM- NI_159	605 641	5 788 230	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	3303.
2014- 07_UM- NI_160	547 270	5 800 410	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	1405.

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_161	604 893	5 787 680	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	2245.
2014- 07_UM- NI_162	547 474	5 800 360	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	7360.
2014- 07_UM- NI_163	603 360	5 789 570	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	2844.
2014- 07_UM- NI_164	601 906	5 796 980	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	396
2014- 07_UM- NI_165	594 071	5 791 070	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	11 326
2014- 07_UM- NI_166	592 144	5 790 480	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	65 760
2014- 07_UM- NI_167	548 299	5 800 200	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	59 542
2014- 07_UM- NI_168	570 298	5 790 940	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	2074.
2014- 07_UM- NI_169	567 883	5 791 700	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	24 386
2014- 07_UM- NI_170	567 498	5 800 280	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	3976.
2014- 07_UM- NI_171	567 154	5 791 790	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	46 803
2014- 07_UM- NI_172	566 787	5 793 800	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	8082.
2014- 07_UM- NI_173	565 974	5 796 510	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	5864.
2014- 07_UM- NI_174	548 745	5 800 150	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	4552.
2014- 07_UM- NI_175	565 793	5 796 590	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	16 079
2014- 07_UM- NI_176	549 009	5 800 130	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	2507.

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_177	565 518	5 796 640	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	24 410
2014- 07_UM- NI_178	549 223	5 800 110	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	10 501
2014- 07_UM- NI_179	565 027	5 796 780	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	200
2014- 07_UM- NI_180	564 709	5 796 860	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	13 899
2014- 07_UM- NI_181	563 611	5 797 250	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	37 561
2014- 07_UM- NI_182	550 271	5 800 030	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	135
2014- 07_UM- NI_183	549 784	5 800 070	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeur régionalement	priorité 3	23 737
2014- 07_UM- NI_184	565 388	5 800 770	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	412 267
2014- 07_UM- NI_185	606 070	5 780 220	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	3231.
2014- 07_UM- NI_186	605 478	5 785 690	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	8117.
2014- 07_UM- NI_187	564 425	5 801 780	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	68
2014- 07_UM- NI_188	597 451	5 779 490	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	87 085
2014- 07_UM- NI_189	573 664	5 801 970	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	336 197
2014- 07_UM- NI_190	587 873	5 801 980	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	1014.
2014- 07_UM- NI_191	587 652	5 801 970	cible dans des paragneiss d'après Sigéom ; la cible se trouve le long d'un linéament magnétique est-ouest majeure régionalement	priorité 3	1174.
2014- 07_UM- NI_194	556 303	5 856 680	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	406 144

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_195	559 839	5 864 770	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	31 078
2014- 07_UM- NI_196	554 863	5 856 960	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	1929
2014- 07_UM- NI_197	559 367	5 864 530	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	37 740
2014- 07_UM- NI_198	554 925	5 856 930	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	68
2014- 07_UM- NI_199	557 641	5 856 730	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	98 254
2014- 07_UM- NI_200	555 377	5 856 900	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	54 643
2014- 07_UM- NI_201	558 087	5 863 810	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	388 108
2014- 07_UM- NI_202	556 704	5 863 370	cible dans des porphyres à feldspaths d'après Sigéom ; tendance magnétique est-ouest	priorité 3	8617
2014- 07_UM- NI_203	588 227	5 934 880	cible dans des roches mafiques à tonalitiques d'après Sigéom	priorité 3	137 197
2014- 07_UM- NI_204	586 803	5 933 590	cible dans des roches mafiques à tonalitiques d'après Sigéom	priorité 3	17 935
2014- 07_UM- NI_205	585 236	5 936 580	cible dans des roches mafiques contenant des minéralisations en Ni plus à l'ouest	priorité 3	246 101
2014- 07_UM- NI_206	586 775	5 935 380	cible dans des roches mafiques contenant des minéralisations en Ni plus à l'ouest	priorité 3	8198
2014- 07_UM- NI_207	585 697	5 937 150	cible dans des roches mafiques contenant des minéralisations en Ni plus à l'ouest	priorité 3	18 169
2014- 07_UM- NI_222	666 642	5 877 840	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	865 020
2014- 07_UM- NI_223	655 992	5 871 830	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	594
2014- 07_UM- NI_224	656 398	5 871 750	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	21 341

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_225	656 415	5 866 110	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	16 521
2014- 07_UM- NI_226	662 414	5 863 930	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	13 417
2014- 07_UM- NI_227	656 557	5 869 310	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	19 361
2014- 07_UM- NI_228	661 878	5 864 020	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	219
2014- 07_UM- NI_245	583 641	5 962 460	cible dans formation de fer ; relation ultramafite et formation de fer courante dans le secteur	priorité 3	33 077
2014- 07_UM- NI_246	664 496	5 858 680	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	40 672
2014- 07_UM- NI_247	668 064	5 857 590	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	38 755
2014- 07_UM- NI_248	667 594	5 858 000	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	28 139
2014- 07_UM- NI_249	667 337	5 858 220	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	21 767
2014- 07_UM- NI_250	667 138	5 856 950	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	4447
2014- 07_UM- NI_251	667 075	5 858 390	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	787
2014- 07_UM- NI_252	664 902	5 858 690	cible dans gneiss à intrusion felsique d'après Sigéom ; au sein d'une crète magnétique circulaire	priorité 3	37 359
2014- 07_UM- NI_253	627 963	5 764 100	cible dans gneiss d'après Sigéom	priorité 3	42 544
2014- 07_UM- NI_254	627 470	5 764 330	cible dans gneiss d'après Sigéom	priorité 3	11 563
2014- 07_UM- NI_255	682 070	5 843 380	cible dans granite et granodiorite d'après Sigéom ; signature de haut MAG	priorité 3	102 047
2014- 07_UM- NI_256	682 175	5 847 060	cible dans granite et granodiorite d'après Sigéom ; signature de haut MAG	priorité 3	28 571

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_257	681 148	5 843 350	cible dans granite et granodiorite d'après Sigéom ; signature de haut MAG	priorité 3	26 826
2014- 07_UM- NI_258	699 555	5 850 190	cible dans granite gneiss d'après Sigéom ; signature de haut MAG	priorité 3	77 446
2014- 07_UM- NI_259	700 433	5 849 790	cible dans granite gneiss d'après Sigéom ; signature de haut MAG	priorité 3	9381
2014- 07_UM- NI_260	701 159	5 850 590	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	237 659
2014- 07_UM- NI_261	702 546	5 851 430	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	53 807
2014- 07_UM- NI_262	699 658	5 850 290	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	23 088
2014- 07_UM- NI_263	702 047	5 850 460	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	56 819
2014- 07_UM- NI_264	701 891	5 851 030	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	1935
2014- 07_UM- NI_265	701 844	5 845 890	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	13 754
2014- 07_UM- NI_266	701 713	5 850 240	cible dans granitegneiss d'après Sigéom ; signature de haut MAG	priorité 3	19 718
2014- 07_UM- NI_267	679 590	6 015 710	cible dans granodiorite d'après Sigéom	priorité 3	3138
2014- 07_UM- NI_268	585 154	5 984 130	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	1 020 470
2014- 07_UM- NI_269	586 603	5 986 240	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	3048.
2014- 07_UM- NI_270	582 748	5 985 690	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	137 231
2014- 07_UM- NI_271	586 333	5 986 530	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	270
2014- 07_UM- NI_272	582 779	5 985 130	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	10 729

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_273	586 074	5 986 680	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	12 170
2014- 07_UM- NI_274	585 827	5 986 820	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	24 593
2014- 07_UM- NI_275	583 794	5 986 390	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	20 355
2014- 07_UM- NI_276	583 318	5 986 290	cible dans granodiorite d'après Sigéom ; cible le long d'une structure magnétique circulaire	priorité 3	21 811
2014- 07_UM- NI_277	678 620	6 015 720	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	113 038
2014- 07_UM- NI_278	690 981	6 009 390	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	4710
2014- 07_UM- NI_279	690 973	6 008 660	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	60 670
2014- 07_UM- NI_280	690 712	6 008 030	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	575
2014- 07_UM- NI_281	678 775	6 014 280	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	68
2014- 07_UM- NI_282	679 296	6 014 030	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	107 478
2014- 07_UM- NI_283	690 271	6 012 040	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	37 605
2014- 07_UM- NI_284	687 110	6 008 590	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	70 432
2014- 07_UM- NI_285	689 369	6 010 590	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	734
2014- 07_UM- NI_286	687 861	6 008 550	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	7165
2014- 07_UM- NI_287	688 238	6 005 560	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	4773
2014- 07_UM- NI_288	689 455	6 007 390	cible dans granodiorite, monzodiorite, à granite d'après Sigéom	priorité 3	46 513

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_538	693 871	5 809 700	cible dans tonalite d'après Sigéom, et à proximité de la ceinture de roche verte d'Eastmain	priorité 3	39 278
2014- 07_UM- NI_539	696 168	5 802 730	cible dans tonalite d'après Sigéom, et à proximité de la ceinture de roche verte d'Eastmain	priorité 3	5074
2014- 07_UM- NI_540	695 652	5 802 720	cible dans tonalite d'après Sigéom, et à proximité de la ceinture de roche verte d'Eastmain	priorité 3	8817
2014- 07_UM- NI_541	694 658	5 810 190	cible dans tonalite d'après Sigéom, et à proximité de la ceinture de roche verte d'Eastmain	priorité 3	7519
2014- 07_UM- NI_542	622 723	5 973 250	cible dans tonalite d'après Sigéom ; il y a une intrusion ultramafique reconnue à moins de 2 km au nord avec la même signature magnétique	priorité 3	14 270
2014- 07_UM- NI_543	622 689	5 973 480	cible dans tonalite d'après Sigéom ; il y a une intrusion ultramafique reconnue à moins de 2 km au nord avec la même signature magnétique	priorité 3	13 443
2014- 07_UM- NI_544	576 965	5 804 250	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	490 642
2014- 07_UM- NI_545	581 903	5 803 600	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	5099
2014- 07_UM- NI_546	562 922	5 817 760	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	20 454
2014- 07_UM- NI_547	579 692	5 803 590	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	373 196
2014- 07_UM- NI_548	563 325	5 817 420	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	104 568
2014- 07_UM- NI_549	578 692	5 803 680	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	53 518
2014- 07_UM- NI_334	625 168	5 847 900	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	718 802
2014- 07_UM- NI_335	652 714	5 831 940	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	59 914
2014- 07_UM- NI_336	612 116	5 854 850	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	11 010
2014- 07_UM- NI_337	646 408	5 830 420	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	23 624

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_338	612 309	5 841 990	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	130 927
2014- 07_UM- NI_339	646 315	5 846 780	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	2521
2014- 07_UM- NI_340	646 242	5 832 360	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	4607
2014- 07_UM- NI_341	646 320	5 830 680	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	50 640
2014- 07_UM- NI_342	646 310	5 840 840	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	51 908
2014- 07_UM- NI_343	612 548	5 846 470	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	36 370
2014- 07_UM- NI_344	645 944	5 843 300	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	10 321
2014- 07_UM- NI_345	645 914	5 846 160	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	41 020
2014- 07_UM- NI_346	645 745	5 832 290	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	3274
2014- 07_UM- NI_347	645 785	5 831 540	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	26 549
2014- 07_UM- NI_348	613 085	5 855 380	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	33 135
2014- 07_UM- NI_349	645 214	5 832 980	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	62 492
2014- 07_UM- NI_350	618 010	5 840 670	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	41 847
2014- 07_UM- NI_351	645 063	5 831 300	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	30 419
2014- 07_UM- NI_352	620 821	5 843 500	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	3671
2014- 07_UM- NI_353	644 988	5 840 750	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	31 435

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_354	622 035	5 840 280	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	109 797
2014- 07_UM- NI_355	644 616	5 829 880	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	5002
2014- 07_UM- NI_356	634 815	5 850 390	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	53 463
2014- 07_UM- NI_357	631 479	5 835 250	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	15 828
2014- 07_UM- NI_358	631 448	5 853 650	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	66 463
2014- 07_UM- NI_359	622 621	5 841 230	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	135
2014- 07_UM- NI_360	630 712	5 853 450	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	20 850
2014- 07_UM- NI_361	629 612	5 850 400	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	21 442
2014- 07_UM- NI_362	623 795	5 847 630	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	106 553
2014- 07_UM- NI_363	626 860	5 847 780	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	42 038
2014- 07_UM- NI_364	626 161	5 849 170	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	38 013
2014- 07_UM- NI_365	625 216	5 846 140	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	21 905
2014- 07_UM- NI_366	625 107	5 841 410	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	14 595
2014- 07_UM- NI_392	519 657	5 850 590	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	181 384
2014- 07_UM- NI_393	530 267	5 844 790	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	12 332
2014- 07_UM- NI_394	524 157	5 844 390	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	22 737

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_395	523 825	5 844 420	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	11 042
2014- 07_UM- NI_396	522 884	5 844 560	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	54 794
2014- 07_UM- NI_397	520 676	5 850 370	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	74 252
2014- 07_UM- NI_398	522 038	5 851 300	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	4344.
2014- 07_UM- NI_399	521 851	5 851 300	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	6032.
2014- 07_UM- NI_400	522 391	5 846 640	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	298 668
2014- 07_UM- NI_401	521 290	5 846 640	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	91 899
2014- 07_UM- NI_402	514 513	5 821 850	cible dans monzodiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	324 666
2014- 07_UM- NI_403	524 124	5 821 520	cible dans monzodiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	1228.
2014- 07_UM- NI_404	513 494	5 821 780	cible dans monzodiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	21 414
2014- 07_UM- NI_405	523 917	5 821 530	cible dans monzodiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	8162.
2014- 07_UM- NI_406	513 969	5 822 040	cible dans monzodiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	13 591
2014- 07_UM- NI_407	534 230	5 824 640	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest indiquant une possible zone de délamination	priorité 3	13 953
2014- 07_UM- NI_408	534 875	5 824 980	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest indiquant une possible zone de délamination	priorité 3	68
2014- 07_UM- NI_409	534 673	5 826 220	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest indiquant une possible zone de délamination	priorité 3	5487.
2014- 07_UM- NI_410	534 909	5 824 570	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest indiquant une possible zone de délamination	priorité 3	10 426

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_411	540 307	5 839 730	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest plissé	priorité 3	31 413
2014- 07_UM- NI_412	541 022	5 838 420	cible dans monzodiorite à diorite ; le long d'un grain magnétique à tendance est-ouest plissé	priorité 3	8135.
2014- 07_UM- NI_413	565 678	5 763 630	cible dans monzodiorite d'après Sigéom ; au sein d'une crète magnétique est-ouest	priorité 3	3527.
2014- 07_UM- NI_414	518 633	5 787 130	cible dans monzodiorite d'après Sigéom ; structure magnétique est-ouest	priorité 3	982
2014- 07_UM- NI_415	559 658	5 809 830	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	149 219
2014- 07_UM- NI_416	566 331	5 809 110	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	11 822
2014- 07_UM- NI_417	555 619	5 809 030	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	9244.
2014- 07_UM- NI_418	565 837	5 809 140	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	79 621
2014- 07_UM- NI_419	556 020	5 809 020	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	63 632
2014- 07_UM- NI_420	565 246	5 809 210	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	81 028
2014- 07_UM- NI_421	561 731	5 810 490	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	62 459
2014- 07_UM- NI_422	561 346	5 809 660	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	5885.
2014- 07_UM- NI_423	561 206	5 808 830	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	396
2014- 07_UM- NI_424	559 131	5 809 930	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	64 618
2014- 07_UM- NI_425	560 094	5 809 430	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	13 162
2014- 07_UM- NI_426	561 003	5 808 870	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	1728.

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_427	560 069	5 809 730	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	4674.
2014- 07_UM- NI_428	560 868	5 808 920	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	881
2014- 07_UM- NI_429	560 558	5 809 350	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	8327.
2014- 07_UM- NI_430	560 739	5 808 980	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique tendance est-ouest plissée isoclinalement	priorité 3	343
2014- 07_UM- NI_431	529 203	5 837 830	cible dans paragneiss d'après Sigéom	priorité 3	147 794
2014- 07_UM- NI_432	631 781	5 772 530	cible dans paragneiss d'après Sigéom	priorité 3	135
2014- 07_UM- NI_433	498 313	5 801 670	cible dans paragneiss d'après Sigéom	priorité 3	1378
2014- 07_UM- NI_434	499 036	5 801 490	cible dans paragneiss d'après Sigéom	priorité 3	4338
2014- 07_UM- NI_435	501 898	5 807 370	cible dans paragneiss d'après Sigéom	priorité 3	5318
2014- 07_UM- NI_436	631 458	5 772 340	cible dans paragneiss d'après Sigéom	priorité 3	62 058
2014- 07_UM- NI_437	528 065	5 837 800	cible dans paragneiss d'après Sigéom	priorité 3	8991
2014- 07_UM- NI_438	630 235	5 775 010	cible dans paragneiss d'après Sigéom	priorité 3	15 664
2014- 07_UM- NI_439	528 342	5 837 850	cible dans paragneiss d'après Sigéom	priorité 3	6898
2014- 07_UM- NI_440	629 222	5 774 930	cible dans paragneiss d'après Sigéom	priorité 3	20 663
2014- 07_UM- NI_441	607 549	5 767 540	cible dans paragneiss d'après Sigéom	priorité 3	24 331
2014- 07_UM- NI_442	560 923	5 761 650	cible dans paragneiss d'après Sigéom	priorité 3	19 835

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_443	560 720	5 761 620	cible dans paragneiss d'après Sigéom	priorité 3	1709
2014- 07_UM- NI_444	559 222	5 761 580	cible dans paragneiss d'après Sigéom	priorité 3	235
2014- 07_UM- NI_445	558 110	5 760 670	cible dans paragneiss d'après Sigéom	priorité 3	27 988
2014- 07_UM- NI_446	544 497	5 772 160	cible dans paragneiss d'après Sigéom	priorité 3	11 815
2014- 07_UM- NI_447	543 808	5 772 870	cible dans paragneiss d'après Sigéom	priorité 3	70 241
2014- 07_UM- NI_448	530 044	5 843 460	cible dans paragneiss d'après Sigéom	priorité 3	11 662
2014- 07_UM- NI_449	542 047	5 798 610	cible dans paragneiss d'après Sigéom	priorité 3	8453
2014- 07_UM- NI_450	531 289	5 843 010	cible dans paragneiss d'après Sigéom	priorité 3	23 841
2014- 07_UM- NI_451	541 032	5 798 430	cible dans paragneiss d'après Sigéom	priorité 3	2224
2014- 07_UM- NI_452	538 186	5 807 420	cible dans paragneiss d'après Sigéom	priorité 3	17 929
2014- 07_UM- NI_453	534 291	5 835 910	cible dans paragneiss d'après Sigéom	priorité 3	17 349
2014- 07_UM- NI_454	533 245	5 767 190	cible dans paragneiss d'après Sigéom	priorité 3	27 021
2014- 07_UM- NI_455	531 841	5 837 980	cible dans paragneiss d'après Sigéom	priorité 3	1292
2014- 07_UM- NI_456	532 021	5 842 660	cible dans paragneiss d'après Sigéom	priorité 3	2807
2014- 07_UM- NI_457	606 017	5 869 500	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique est-ouest	priorité 3	35 193
2014- 07_UM- NI_458	606 522	5 869 540	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique est-ouest	priorité 3	3220.

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_459	521 828	5 843 430	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique est-ouest	priorité 3	237
2014- 07_UM- NI_460	522 116	5 843 430	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique est-ouest	priorité 3	3198.
2014- 07_UM- NI_461	548 673	5 784 630	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique plissée	priorité 3	87 965
2014- 07_UM- NI_462	549 421	5 784 470	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique plissée	priorité 3	232
2014- 07_UM- NI_463	549 185	5 784 420	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique plissée	priorité 3	12 991
2014- 07_UM- NI_464	548 871	5 784 430	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique plissée	priorité 3	135
2014- 07_UM- NI_465	548 892	5 785 100	cible dans paragneiss d'après Sigéom ; au sein d'une crète magnétique plissée	priorité 3	7619.
2014- 07_UM- NI_466	510 049	5 813 440	cible dans paragneiss d'après Sigéom ; le long d'une crèete magnétique est-ouest plissée	priorité 3	20 778
2014- 07_UM- NI_467	509 342	5 812 880	cible dans paragneiss d'après Sigéom ; le long d'une crèete magnétique est-ouest plissée	priorité 3	4305.
2014- 07_UM- NI_468	509 828	5 813 240	cible dans paragneiss d'après Sigéom ; le long d'une crèete magnétique est-ouest plissée	priorité 3	2362.
2014- 07_UM- NI_469	509 573	5 813 020	cible dans paragneiss d'après Sigéom ; le long d'une crèete magnétique est-ouest plissée	priorité 3	1552.
2014- 07_UM- NI_470	542 505	5 779 240	cible dans paragneiss d'après Sigéom ; le long d'une structure haut MAG	priorité 3	79 846
2014- 07_UM- NI_471	542 647	5 779 660	cible dans paragneiss d'après Sigéom ; le long d'une structure haut MAG	priorité 3	23 950
2014- 07_UM- NI_472	541 459	5 778 200	cible dans paragneiss d'après Sigéom ; le long d'une structure haut MAG	priorité 3	4400.
2014- 07_UM- NI_473	541 690	5 778 380	cible dans paragneiss d'après Sigéom ; le long d'une structure haut MAG	priorité 3	11 073
2014- 07_UM- NI_474	542 211	5 778 480	cible dans paragneiss d'après Sigéom ; le long d'une structure haut MAG	priorité 3	3501.

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_475	522 438	5 793 720	cible dans paragneiss d'après Sigéom ; petite structure magnétique est-ouest	priorité 3	32 726
2014- 07_UM- NI_476	587 625	5 850 440	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	121 104
2014- 07_UM- NI_477	606 502	5 837 330	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	2822
2014- 07_UM- NI_478	580 379	5 850 740	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	20 421
2014- 07_UM- NI_479	597 856	5 836 110	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	6927
2014- 07_UM- NI_480	596 998	5 851 630	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	6609
2014- 07_UM- NI_481	595 978	5 828 790	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	877
2014- 07_UM- NI_482	595 866	5 835 120	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	6017
2014- 07_UM- NI_483	580 687	5 850 260	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	43 244
2014- 07_UM- NI_484	595 030	5 850 980	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	1901
2014- 07_UM- NI_485	594 837	5 836 930	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	7848
2014- 07_UM- NI_486	592 243	5 828 380	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	270
2014- 07_UM- NI_229	660 352	5 865 500	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	4031
2014- 07_UM- NI_230	660 320	5 877 770	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	604
2014- 07_UM- NI_231	660 059	5 874 350	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	6463
2014- 07_UM- NI_232	659 460	5 870 840	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	28 930

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_233	659 297	5 865 760	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	22 446
2014- 07_UM- NI_234	659 311	5 874 570	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	135 619
2014- 07_UM- NI_235	658 324	5 867 340	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	352
2014- 07_UM- NI_236	656 644	5 865 940	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	4531
2014- 07_UM- NI_237	657 403	5 865 930	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	260 579
2014- 07_UM- NI_238	658 358	5 867 180	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	11 925
2014- 07_UM- NI_239	658 129	5 866 030	cible dans des structures magnétiques plissées, environnement gneissique d'après Sigéom	priorité 3	15 039
2014- 07_UM- NI_240	688 252	5 941 480	cible dans des conglomérats d'après Sigéom	priorité 3	41 862
2014- 07_UM- NI_241	688 307	5 941 180	cible dans des conglomérats d'après Sigéom	priorité 3	1886
2014- 07_UM- NI_242	627 899	5 999 960	cible dans diorite à gneiss tonalitique d'après Sigéom	priorité 3	16 446
2014- 07_UM- NI_243	628 159	6 000 230	cible dans diorite à gneiss tonalitique d'après Sigéom	priorité 3	1224
2014- 07_UM- NI_367	624 414	5 847 920	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	2544
2014- 07_UM- NI_368	624 361	5 845 860	cible dans intrusions felsiques et gneiss d'après Sigéom	priorité 3	168 524
2014- 07_UM- NI_386	613 495	5 969 390	cible dans metasédiment ; signature mag plus faible que les formations de fer	priorité 3	7652
2014- 07_UM- NI_387	611 469	5 967 960	cible dans metasédiment ; signature mag plus faible que les formations de fer	priorité 3	4792
2014- 07_UM- NI_388	498 383	5 827 790	cible dans monzidiorite à diorite d'après Sigéom ; le long d'une crète magnétique est-ouest	priorité 3	100 691

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_389	533 984	5 844 730	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	941 186
2014- 07_UM- NI_390	517 861	5 852 580	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	7949
2014- 07_UM- NI_391	531 139	5 844 900	cible dans monzodiorite à diorite d'après Sigéom ; grain magnétique est-ouest	priorité 3	120 662
2014- 07_UM- NI_487	592 355	5 848 420	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	20 404
2014- 07_UM- NI_488	581 640	5 850 300	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	9170
2014- 07_UM- NI_489	582 163	5 849 210	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	11 337
2014- 07_UM- NI_490	582 628	5 850 230	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	237
2014- 07_UM- NI_491	590 675	5 832 790	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	2779
2014- 07_UM- NI_492	584 797	5 849 690	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	85 624
2014- 07_UM- NI_493	585 152	5 852 150	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	50 842
2014- 07_UM- NI_494	587 395	5 850 770	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	10 761
2014- 07_UM- NI_495	586 845	5 851 910	cible dans paragneiss et intrusions d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	1669
2014- 07_UM- NI_496	581 119	5 840 490	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	140 953
2014- 07_UM- NI_497	590 621	5 825 230	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	135
2014- 07_UM- NI_498	573 135	5 835 970	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	740
2014- 07_UM- NI_499	573 174	5 836 020	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	137

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_500	574 637	5 850 160	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	26 380
2014- 07_UM- NI_501	586 477	5 827 020	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	5965
2014- 07_UM- NI_502	575 638	5 852 140	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	10 435
2014- 07_UM- NI_503	581 772	5 843 020	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	398
2014- 07_UM- NI_504	576 141	5 852 660	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	22 736
2014- 07_UM- NI_505	581 406	5 833 920	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	20 207
2014- 07_UM- NI_506	577 527	5 840 630	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	11 951
2014- 07_UM- NI_507	581 351	5 833 670	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	66 012
2014- 07_UM- NI_508	578 272	5 843 680	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	9463
2014- 07_UM- NI_509	580 925	5 833 230	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	5023
2014- 07_UM- NI_510	579 321	5 843 310	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	19 800
2014- 07_UM- NI_511	579 760	5 841 330	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	33 106
2014- 07_UM- NI_512	580 791	5 842 120	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	11 173
2014- 07_UM- NI_513	579 833	5 839 820	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	7782
2014- 07_UM- NI_514	580 495	5 844 370	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	7757
2014- 07_UM- NI_515	580 387	5 839 910	cible dans paragneiss et intrusions felsiques d'après Sigéom	priorité 3	21 744

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_516	509 946	5 842 700	cible dans patagneiss d'après Sigéom	priorité 3	11 702
2014- 07_UM- NI_534	524 010	5 783 570	cible dans tonalite d'après Sigéom	priorité 3	50 228
2014- 07_UM- NI_535	660 863	6 004 450	cible dans tonalite d'après Sigéom	priorité 3	2427
2014- 07_UM- NI_536	608 573	6 004 850	cible dans tonalite d'après Sigéom	priorité 3	40 366
2014- 07_UM- NI_537	608 078	6 002 910	cible dans tonalite d'après Sigéom	priorité 3	28 108
2014- 07_UM- NI_550	577 831	5 803 780	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	135
2014- 07_UM- NI_551	574 332	5 807 830	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	8589
2014- 07_UM- NI_552	575 181	5 805 030	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	61 049
2014- 07_UM- NI_553	575 720	5 804 820	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	52 978
2014- 07_UM- NI_554	575 108	5 806 110	cible dans un monzonite d'après Sigéom ; la cible se trouve le long d'un linéament magnétique qui délimite un domaine magnétique	priorité 3	2000
2014- 07_UM- NI_626	601 217	5 976 860	cible dans une charnière de pli	priorité 3	36 820
2014- 07_UM- NI_627	600 957	5 976 630	cible dans une charnière de pli	priorité 3	6123
2014- 07_UM- NI_628	625 338	6 003 590	cible dans une charnière de pli et dans une unité magnétique continue qui est reconnue plus au nord comme ultramafique	priorité 3	129 711
2014- 07_UM- NI_629	625 785	6 002 360	cible dans une charnière de pli et dans une unité magnétique continue qui est reconnue plus au nord comme ultramafique	priorité 3	25 873
2014- 07_UM- NI_630	624 273	6 001 880	cible dans une charnière de pli et dans une unité magnétique continue qui est reconnue plus au nord comme ultramafique	priorité 3	29 196
2014- 07_UM- NI_631	625 622	6 003 050	cible dans une charnière de pli et dans une unité magnétique continue qui est reconnue plus au nord comme ultramafique	priorité 3	43 377

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_632	565 548	5 995 410	cible dans une intrusion felsique ; cible le long d'une structure magnétique linéaire NNO	priorité 3	154 112
2014- 07_UM- NI_633	570 099	5 989 190	cible dans une intrusion felsique ; cible le long d'une structure magnétique linéaire NNO	priorité 3	35 697
2014- 07_UM- NI_634	566 143	5 994 670	cible dans une intrusion felsique ; cible le long d'une structure magnétique linéaire NNO	priorité 3	49 628
2014- 07_UM- NI_639	586 097	5 810 640	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	70 432
2014- 07_UM- NI_640	589 704	5 813 630	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	13 329
2014- 07_UM- NI_641	576 796	5 809 650	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	10 786
2014- 07_UM- NI_642	588 791	5 814 580	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	49 194
2014- 07_UM- NI_643	577 497	5 822 970	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	12 770
2014- 07_UM- NI_644	588 425	5 814 280	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	68
2014- 07_UM- NI_645	577 797	5 809 140	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	4591
2014- 07_UM- NI_646	583 337	5 805 200	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	34 482
2014- 07_UM- NI_647	583 611	5 804 720	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	39 135
2014- 07_UM- NI_648	587 403	5 813 190	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	24 612
2014- 07_UM- NI_649	583 874	5 804 490	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	279
2014- 07_UM- NI_650	586 740	5 810 050	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	14 261
2014- 07_UM- NI_651	585 358	5 810 160	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	52 773

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_652	586 733	5 810 810	cible dans une monzonite d'après Sigéom ; grain magnétique à tendance nord-sud	priorité 3	21 623
2014- 07_UM- NI_653	571 070	5 784 230	cible dans une tonalite d'après Sigéom ; le long d'une structure magnétique est-ouest plissée	priorité 3	86 043
2014- 07_UM- NI_654	569 441	5 783 460	cible dans une tonalite d'après Sigéom ; le long d'une structure magnétique est-ouest plissée	priorité 3	23 885
2014- 07_UM- NI_655	570 169	5 784 140	cible dans une tonalite d'après Sigéom ; le long d'une structure magnétique est-ouest plissée	priorité 3	1068
2014- 07_UM- NI_656	569 773	5 784 000	cible dans une tonalite d'après Sigéom ; le long d'une structure magnétique est-ouest plissée	priorité 3	71 195
2014- 07_UM- NI_657	547 089	5 791 420	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	4040
2014- 07_UM- NI_658	569 719	5 780 810	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	2450
2014- 07_UM- NI_659	564 175	5 784 630	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	68
2014- 07_UM- NI_660	555 654	5 786 370	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	2090
2014- 07_UM- NI_661	556 125	5 786 180	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	68
2014- 07_UM- NI_662	564 175	5 783 320	cible dans une zone dont le MAG indique une probable délamination ; les gneiss sont les roches hautes reconnues d'après Sigéom	priorité 3	1243
2014- 07_UM- NI_663	619 530	5 972 080	cible dans unités magnétiques reconnue un peu plus au nord comme ultramafique	priorité 3	80 568
2014- 07_UM- NI_664	619 892	5 972 960	cible dans unités magnétiques reconnue un peu plus au nord comme ultramafique	priorité 3	31 904
2014- 07_UM- NI_665	619 634	5 972 530	cible dans unités magnétiques reconnue un peu plus au nord comme ultramafique	priorité 3	37 555
2014- 07_UM- NI_666	635 996	5 761 850	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	193 883
2014- 07_UM- NI_667	640 880	5 762 920	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	1011

CIBLE_ID	X_UTM_NAD83_Z18	Y_UTM_NAD83_Z18	COMMENTAIRES	PRIORITÉ	SURFACE (m2)
2014- 07_UM- NI_668	635 171	5 761 580	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	2197
2014- 07_UM- NI_669	640 092	5 762 730	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	112 624
2014- 07_UM- NI_670	635 444	5 762 530	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	18 405
2014- 07_UM- NI_671	636 955	5 762 660	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	104 732
2014- 07_UM- NI_672	636 240	5 762 410	cible dna des amphibolite d'après Sigéom ; au sein d'une crète magnétique à tendance est-ouest	priorité 3	72 899
2014- 07_UM- NI_673	583 565	5 761 500	cible le long d'une structure magnétique à tendance est-ouest ; au sein de paragneiss d'après Sigéom	priorité 3	104 001
2014- 07_UM- NI_674	586 506	5 766 530	cible le long d'une structure magnétique à tendance est-ouest ; au sein de paragneiss d'après Sigéom	priorité 3	396
2014- 07_UM- NI_686	603 475	5 975 200	cible reconnue dans des métasédiment plissés ; signal mag plus faible que les formations de fer	priorité 3	262 915
2014- 07_UM- NI_687	602 538	5 974 410	cible reconnue dans des métasédiment plissés ; signal mag plus faible que les formations de fer	priorité 3	12 380
2014- 07_UM- NI_688	602 825	5 974 730	cible reconnue dans des métasédiment plissés ; signal mag plus faible que les formations de fer	priorité 3	68
2014- 07_UM- NI_689	602 756	5 974 680	cible reconnue dans des métasédiment plissés ; signal mag plus faible que les formations de fer	priorité 3	1440