
3D mantle tomography

Seismic tomography gives a 3D snap shot of the actual relative variation in composition and 

temperature of the mantle (Fig. 2). High velocity anomalies characterize relatively low temperatures 

and highly depleted mantle of cratonic root, whereas low velocities is the signature of younger 

metasomatized or tectonically active regions. The shear wave velocity model of Godey et al. (2003) 

for the uppermost mantle beneath the North America has been used for this study. The three 

dimensional velocity structures are imaged down to 250 km. Relative high velocities (~ +6%) 

characterize Archean sub-cratonic lithosphere and persist down to 230 km beneath Lac de Gras. 

Low velocities (~ -7%) characterize the tectonically active western Cordillera. Slices at 10km depths 

intervals between 30km and 250km were used as inputs to the mineral potential model (Fig. 3). 

Horizontal velocity gradients maps at each depth have also been calculated and used in the model 

(Fig. 4).

Bouguer gravity anomalies are induced by variations in crustal and mantle density and thickness. On 

the continental domain, lowest gravity anomalies reflect tectonically active region such as the 

Cordillera and the Basin and Range (Fig. 5). Globally, Archean cratons show lower gravity anomalies 

than surrounding younger terranes.

The Moho topography preserve features reflecting the tectonic processes of the lithosphere (Fig. 6). 

The seismic Moho's depth is 27 km beneath the most recently accreted crust, thickens beneath the 

plutonic suture zone from 30 to 36 km depth, and then remains almost entirely within the depth 

range of 33-36 for the stable part of the continent (Clowes et al., 2005). Significant changes in Moho 

depth occur at relict subduction zones and rifted margins (active and preserved). Data source comes 

from model Crust 5.1 of Mooney et al. 1998.

All input layers were transformed to a 50 km x 50 km cell size. Layers with a more precise resolution 

were averaged; conversely, layers with a less precise resolution were interpolated to that size. The 

model contains 7698 cells of that size. Of these, 71 contain known diamondiferous kimberlites. Each 

50 x 50 km cell was assigned '1' if at least one diamondiferous kimberlite is known in that cell, and '0' 

if not. This forms a binary layer which is used at the target data for neural network training. 

Training by a neural network usually requires having subequal numbers of deposits cells vs. "barren" 

cells. However, the number of available deposits is usually quite low even in the best cases, which 

means that a difficult choice of barren cells must be made to accommodate that low number of 

deposits. A technique of noise addition (Brown et al., 2003) can be used to create a number of 

synthetic, randomly generated deposits for training. This technique has been shown to significantly 

improve training results. 

Here, a noise addition scheme in which 700 hundred synthetic kimberlites have been added using a 

20% randomly generated noise has been used. All cells which are not known to contain any 

kimberlites were considered as "barren".

A feed-forward, back-propagation neural network of the generalized feed-forward type was trained 

using the input and target data. The neural networks software used for the training was 

NeuroSolutions 4.01.  As is usual with neural network training, available cells were split into training 

(50%), cross-validation (25%) and testing (25%) subgroups. The network used had the following 

characteristics: 

- 48 neurons in the input layer

- 8 neurons in the hidden layer

- Learning algorithm: Quickpropagation with step size 0.04 and a momen

- 10 runs with 5000 cycles maximum per run, stopping on any increase in the cross-

validation mean squared error for at least 50 cycles. The network with the lowest mean 

squared error in the cross-validation group was kept as the best network and used to 

produce the maps.

Classification results on test cells 

80% of all barren cells in the test group were classified as barren (Table I). The 
remaining 20% are barren cells that are considered favourable by the network. 85% of 
all diamondiferous kimberlites cells in the test group were correctly classified as 
favourable. These test results indicate that the neural network is able to compute a 
combination of input cells that can predict the location of known kimberlites vs. barren 
areas. 

Sensitivity analysis

Sensitivity analysis is a method that can be used to semi-quantitatively rate the 
importance of inputs. Results of the sensitivity analysis are presented on Figures 7 and 
8. The most favourable areas are characterized by fast velocities and high horizontal 
gradients in the lower parts of our tomographic model (150 to 230 km depths), high 
wave velocities in the middle-upper parts (50-90 km) and low Bouguer gravity 
anomalies. 
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Application of artificial neural networks to continental-scale mineral 
potential mapping for diamondiferous kimberlites in North America
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Consortium de Recherche en Exploration Minérale (CONSOREM), Université du Québec à Montréal

The number of diamondiferous kimberlites in North America has increased dramatically over the last 
ten years. We estimate the population of kimberlites in Canada and US to be more than 880, where 
about 455 kimberlites are considered diamondiferous - contain at least microdiamonds (Faure, 
2006). This large number of new discoveries now makes it possible to apply empirical mineral 
mapping techniques to diamond exploration. We present a continental-scale mineral potential model 
for diamondiferous kimberlites in North America based on an artificial neural network, which uses 
regional geophysics as inputs and the location of known diamondiferous kimberlites as data to be 
modelled. 

We have used a data-driven technique to model diamondiferous kimberlites favorability. This 

technique directly uses the input data to deduce the rules that govern the location of known mineral 

deposits based on a set of input layers. In data-driven techniques such as artificial neural networks, 

expert knowledge is required to determine which input layers are likely to be important to the model, 

even if the exact way in which each layer should contribute to the potential mapping is not known. 

Artificial neural networks are a powerful data-driven technique that is loosely based on the structure 

and interactions of biological neurons. Each artificial (or biological) neuron is a simple entity that 

performs a very basic processing. It is the connection of these basic components in large networks 

that provide powerful data processing capabilities to the networks. Just like their biological 

counterparts, artificial neural networks can "learn" from examples is provided to them and apply this 

learning to new cases for which the result is not known. In a mineral potential mapping project, a 

neural network can "learn" to recognize the combination and characteristics of a given set of input 

geoscience layers that best explain the location of known deposits vs. "barren" areas and evaluate 

the mineral potential of all cells based on the learning process. Examples of applications of neural 

networks in mineral potential mapping can be found in several studies (Pan and Harris, 2000, Singer 

and Kouda, 1996, Brown et al., 2000; Bougrain et al., 2003). 

The mineral potential model covers most of Canada and the U.S (Fig. 1). The model is restricted to 

emerged areas and to adjacent marine continental platforms. The model is also restricted by the 

availability of some of the input layers.

The location of 419 diamondiferous kimberlites in North America has been used as the target layer 

for the mineral potential model (Fig.1).

Figure 1: Outline of the mineral potential map and location of 
diamondiferous kimberlites in North America (from Faure, 2006).

Figure 3: Raleigh wave phase velocity perturbations at a 
depth of 170 km.

Figure 4: Horizontal gradients of Raleigh wave phase velocity 
perturbations at a depth of 150 km.

Figure 5: Bouguer gravity anomalies. (source: DNAG, 1989).

Figure 7: Sensitivity analysis for raw Raleigh wave phase 
velocity perturbations.

Figure 8: Sensitivity analysis for horizontal gradients of 
Raleigh wave phase velocity perturbations.

Figure 9: Mineral potential for diamondiferous kimberlites 
in North America. 

Figure 10: 0.6 contour of mineral potential for diamondiferous 
kimberlites in North America superimposed on a raster of the depth 
at which a +6% wave velocity perturbation is attained.

Figure 6: Depth of Moho (from model Crust 5.1 of Mooney et al. 1998).

Figure 2: 3D block model of Raleigh 
wave phase velocity perturbations for North America.

The Mineral potential for diamondiferous kimberlites in North 

America is shown on Figure 9. The high favourable regions for 

diamontiferous kimberlites are not vertically correlated with 

coldest and deepest part of the cratons, but surround high 

velocity roots at depths between 160 to 200 km (Fig. 10). This 

observation broadly supports the hypothesis that kimberlites 

are confined to the margin of cratons (Kennedy, 1965; Griffin et 

al. 2004), but we further suggest that the most favourable 

areas are located around cratonic keels between that range of 

depths (Faure et al. 2006). In particular, that is prevalent 

underneath Slave-Rae-Hearne cratons where Lac de Gras and 

Ranklin Inlet fields are located on west and east sides 

respectively of a circular region of high favorability. 

One particularly interesting feature on the resulting mineral 

potential map is the presence of a large, E-W trending, high 

favorability zone that connects the Hudson Bay lowlands 

kimberlites in Ontario (Attawapiskat) with the James Bay and 

Otish kimberlites in Quebec (Fig. 9). The Grenville 

Parautochtonous zone in central Quebec and Labrador also 

appears as a favourable regional target. 

Our correlation results for intervals between 150-230 are in 

accordance with the depth of the diamond stability field and 

the Lithosphere-Astenosphere boundary (LAB) estimated by 

xenoliths in kimberlites (Griffin et al. 2004; Fig. 7). The strong 

association with high horizontal gradients (depths 80 and 150 

km) further indicates that the most prospective terrains are 

those that are at the boundaries between different 

thermal/compositional blocks or deep seated mantle 

structures.

1. Introduction

2. Mineral potential mapping technique

3. Artificial neural networks

4. Study area

5. Location of diamondiferous kimberlites
in North America (target layer)

6. Raw and derived input layers

Bouguer Gravity anomalies

Moho depth

7. Data pre-processing

8. Data processing by a feed-forward,

back-propagation neural network

Discussion and interpretation 

Acknowledgments

References

9. Results and interpretation

Table 1

Output / Desired Deposit Barren 

Deposit 158 381 

Barren 27 1531 

Performance Deposit Barren 

Mean Squared Error 0.13 0.13 

R 0.45 0.45 

Percent Correct 85.4 80.0 


