Quantifier l'altération dans un VMS métamorphisé au grade des amphibolites, l'exemple du dépôt de Coulon

Lucie Mathieu / Consorem, UQAC
Sylvain Trépanier / Midland exploration
Rose-Anne Bouchard, Vital Pearson / Osisko mining
Réal Daigneault / CERM UQAC, Consorem
Consorem projects

2013-04, 2014-01 – Altered rocks metamorphosed to high-grade
2015-06 – Metamorphosed gold deposits
2016-07 – Methods for the quantification of hydrothermal alteration

Publication

The Coulon deposit: quantifying alteration in volcanogenic massive sulphide systems modified by amphibolite-facies metamorphism

Lucie Mathieu, Rose-Anne Bouchard, Vital Pearson, and Réal Daigneault

(Mathieu et al. 2016b)
Quantifying alteration in challenging areas

Coulon VMS

- High-grade metamorphism

R.A. Bouchard (M.Sc, UQAC)
Coulon deposit – La Grande Sub-Province, James Bay area
Upper amphibolite facies

Osisko dataset
n = 5583
Five traces analysed

Alteration quantified with:
- CONSONORM_HG (Mathieu et al. 2016a)
- Mass balance (Gresens 1967) with modelled precursor (Trépanier et al. 2016)

Mathieu et al. (2016b)
1. Formatting chemical data
 - Extracting major and trace elements and volatiles (wt%) from an input .txt file

2. Calculate accessory minerals
 - Calculate sulphides, Fe-Ti oxides, carbonates, etc.

3. Calculate silicates
 - Select small tetrahedron
 - Calculate the 4 minerals of the small tetrahedron, distribute elements between the solid solutions
 - Adjustments
 - Amount of Si consumed by the minerals?
 - Si excess
 - Si deficit
 - Form quartz
 - React minerals

4. Reacting quartz and carbonates under certain circumstances
 - (see Fig. 5)

5. Normative estimations of volatils
 - Is LOI > H₂O⁺_mineral + CO₂ + H₂O⁻ + S - GOI?
 - YES
 - NO

6. Final operations
 - Adjust for Fe₂O₃
 - wt% of minerals
 - Density of sample

Mathieu et al. (2016a)
KFASH (dashed) and KMASH (solid) reactions (after Spear and Cheney 1989)

KFMASH pseudosection (Mesger and Régnier 2016)

Pictures: Cordierite-enriched rocks of Coulon
Index_{FeMg} = 100(cordierite + biotite + olivine + talc + anthophyllite)/(sum of all silicates - quartz)
Calculated using mass transfer equations (Gresens 1967)

Requires: 1. Precursor (fresh rock)
 • Model (Trépanier et al. 2016)

Requires: 2. Immobile elements
 • Ti, Al, Zr, Y, Cr available
 • Cr removed
Coulon - #2. Mass balance

Box plot

Modelled precursors on the TAS diagram

Rhyolite, dacite, andesite, basalt classification – made using Zr/Ti
VMS deposit, Baie-James area
Upper amphibolite facies

Cordierite-enriched hostrocks

• « Prograde hydrothermal remobilisation » ? (Tomkins 2007)

Alteration

• Chloritisation mostly, and sericitisation (proximal samples)
• In the most felsic unit (maximum porosity?, sub-surface VMS?)

Recommendations

• Sericitisation = Sillimanite-bearing schists (Qz-Bt-Sill)
• Chloritisation:
 • Moderate: Bt+Cord < 20-30 vol% and Bt>Cord
 • Intense: Bt+Cord > 20-30 vol% and Bt<Cord

Mathieu et al. (2016b)
Merci de votre attention

Many thanks to R. Daigneault, S. Trépanier, R.A. Bouchard, V. Pearson
To S. Faure, L. Bigot, S. Rafini, etc.
And to Consorem’s parteners: