Texture, cathodoluminescence and trace elements composition of scheelite, indicator of orogenic gold deposits

Marjorie Sciuba, Georges Beaudoin, François Huot
Université Laval, Québec, Canada
NSERC—Agnico-Eagle Industrial Research Chair in Mineral Exploration
Dome, Abitibi
Macraes, New Zealand
Variation in trace elements between two generations

Macraes, New Zealand
Crusader, Agnew district, Australia
Variation in trace elements between two zones

Crusader
Agnew district, Australia

<table>
<thead>
<tr>
<th>CRUS01B-L1</th>
<th>ppm</th>
<th>Zone 1</th>
<th>Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>58300</td>
<td>70200</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>166.10</td>
<td>15.60</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>4.25</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>172.00</td>
<td>6.18</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>48.80</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>0.33</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>860.00</td>
<td>15.50</td>
<td></td>
</tr>
<tr>
<td>ΣREE</td>
<td>559.77</td>
<td>18.10</td>
<td></td>
</tr>
</tbody>
</table>
REE Patterns

Bell-shape with positive Eu anomaly
REE Patterns

Bell-shape with negative Eu anomaly

Deposits
* Malartic (n=2) ■ Buzwagi (n=1)
○ Val-d’Or (n=13) + Mount Pleasant (n=4)
× Meliadine (n=5) ● Norseman (n=3)
REE Patterns

Flat with positive Eu anomaly
REE Patterns

Positive slope with HREE enrichment
REE Patterns

- Negative slope with positive Eu anomaly and LREE enrichment.
REE Patterns

Orogenic Gold deposits
REE Patterns

Chinese skarn deposits

- Baizhangyan W-Mo skarn (n=35)
- Jitoushan W-Mo skarn (n=26)
- Xuebaoding W-Sn-Be skarn (n=7)
- Zhazixi W-Sb skarn (n=55)
Quantification of the REE patterns

(a)

(b)

REE pattern
- Bell +
- Bell -
- Flat
- Decreasing
- Increasing
- Nevoria
- Bell Ho +
- Bell Ho -

Deposit type
- Orogenic
 - This study
 - Literature
- Crusader
 - Skarn
 - Kumbel (Poulin et al., accepted)
 - Jitoushan and Baizhangyan (Song et al., 2014)
 - Zhazixi (Peng et al., 2008)
 - Xueboading (Yan et al., 2007)
Substitution in scheelite

\[2\text{Ca}^{2+} = \text{REE}^{3+} + \text{Na}^+ \]
Influence of the hostrock composition
Influence of the metamorphism

![Graph showing the relationship between various geological factors and metamorphic facies.](image)

<table>
<thead>
<tr>
<th>Metamorphic facies</th>
<th>Mineralization age</th>
<th>Host rock composition</th>
<th>Legend per orogenic-gold deposits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Archean</td>
<td>Sediments</td>
<td>Meliadine</td>
</tr>
<tr>
<td>Moderate</td>
<td>Proterozoic</td>
<td>Black shales</td>
<td>Cuiaba</td>
</tr>
<tr>
<td>High</td>
<td>Phanerozoic</td>
<td>Intermediate</td>
<td>Nevoria</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mafic</td>
<td>Edward’s Find</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intermediate-mafic</td>
<td>Tarmoola</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ultramafic</td>
<td>Paddington</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contact mafic/felsic</td>
<td>Norseman</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norseman-01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norseman-02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norseman-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lindays</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kambalda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Young Davidson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Malartic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lamaque</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sigma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Beaufor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Macraes</td>
</tr>
</tbody>
</table>

Gold deposit not orogenic in origin: Crusader
PCA on orogenic gold deposits

Influence of the hostrock composition and the metamorphism

Legend per orogenic-gold deposits (One symbol is not exclusive to one deposit):
- Melleadine
- Dome
- Young Davidson
- Beaufor
- Kochkar
- Malartic
- Lameque
- Essakane
- Huti
- Tarmoosa
- Paddington
- Norseman-01
- Norseman-02
- Norseman-03
- Mt Pleasant
- Mt Charlotte
- Macraes
Strontium variation in scheelite

Orogenic gold deposits
- EPMA
- LA-ICP-MS
- Literature

Crusader
- EPMA
- LA-ICP-MS

Skarn
Greisen
VMS
Molybdenum variation in scheelite

Orogenic gold deposits
- EPMA
- LA-ICP-MS
- Literature

Crusader
- EPMA
- LA-ICP-MS

Skarn
Greisen
VMS
PCA on various deposit types

Deposit types:
- Orogenic gold:
- W-Mo skarn:
- Other gold-deposit:

Score contributions:
- Orogenic
- Nevoria
- Crusader
- Skarn
Conclusion

Scheelite from orogenic gold deposits:

• homogeneous in CL & trace element composition
• CL zonation correlates with variation in trace element composition
• 4 REE patterns with a bell-flat serie
• Trace element variation after hostrock composition, metamorphic facies
• Not conclusive features: ultramafic and mafic hosted deposits, mineralization age

• REE, Mo & Sr: discriminant for orogenic vs. others
Acknowledgements

All people, geological organisations and mining companies who contributed to the research project:

Acacia Mining, AngloGold Ashanti, R-M. Bell (GEUS), D. Craw (Otago University), C. Daoust, A. Dziggel (Aachen University), B. Dubé (CGC), P. Eilu (GTK), H. Falck (NTGS), A. Fontaine (INRS), D. Fougerouse, Goldcorp, R. Goldfarb (USGS), S. Hagemann, A. Hellmann (Aachen University), IAMgold, R. Large (University of Tasmania), E. Marsh (USGS), A. Mueller, L. Raimbault (École des Mines de Paris), Royal Ontario Museum, K. Shelton (University of Missouri), R. Taylor (USGS), N. Thébaud (UWA), A. Yakubchuk.
Thank you for your attention

Marjorie Sciuba, Georges Beaudoin, François Huot
Université Laval, Québec, Canada
NSERC—Agnico-Eagle Industrial Research Chair in Mineral Exploration
References

Poulin, R. S., McDonald, A. M., Kontak, D. J., and McClennenagh, M. B., accepted. Crystal-chemical influences on the cathodoluminescence of scheelite, Canadian Mineralogist.

Richard Sillitoe présentera un cours sur

“Porphyry Copper Deposits: from their Roots to the Paleosurface”